Rob Massatti, Trevor M. Faske, Ivana M. Barnes, Elizabeth A. Leger, Thomas L. Parchman, Bryce A. Richardson, L. Lacey Knowles
{"title":"缝合破碎景观:植物中的马赛克杂交带可能促进生态系统的恢复","authors":"Rob Massatti, Trevor M. Faske, Ivana M. Barnes, Elizabeth A. Leger, Thomas L. Parchman, Bryce A. Richardson, L. Lacey Knowles","doi":"10.1073/pnas.2410941122","DOIUrl":null,"url":null,"abstract":"Many widespread plant taxa of western North America have diversified into phenotypically and genetically divergent lineages due to complex biogeographic histories across heterogeneous landscapes. Mosaic hybrid zones can form when geographically co-occurring, yet environmentally distinct, lineages cross-pollinate and form hybrids that occupy unique environmental niches absent of a geographic cline. This expands the total environmental space across which parental and hybrid individuals grow, resulting in larger, less fragmented geographic distributions. Here, we highlight hybridization mosaics across three study systems containing taxa critical to widespread plant communities in western North America: <jats:italic toggle=\"yes\">Ericameria nauseosa</jats:italic> , <jats:italic toggle=\"yes\">Artemisia tridentata</jats:italic> , and <jats:italic toggle=\"yes\">Sphaeralcea fendleri</jats:italic> . The systems contain diverged taxa that co-occur across the landscape and hybridize readily. Hybridization among taxa has facilitated niche expansion into intermediate environments consistent with unique combinations of adaptive genetic variation, creating more continuity within each study system—study systems occupy ~820 to 270,000 km <jats:sup>2</jats:sup> more geographic area by virtue of hybridization. Furthermore, hybrids are predicted to play important roles in future climates, as they may occupy 8 to 475% larger distributions compared to present. Convergent patterns signal mosaic hybridization as an underappreciated mechanism with broad ecological and evolutionary ramifications. Leveraging mosaic hybridization may assist the creation of restoration management plans that aim to mitigate the deleterious effects of habitat fragmentation on ecosystems in the context of climate change.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"59 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suturing fragmented landscapes: Mosaic hybrid zones in plants may facilitate ecosystem resiliency\",\"authors\":\"Rob Massatti, Trevor M. Faske, Ivana M. Barnes, Elizabeth A. Leger, Thomas L. Parchman, Bryce A. Richardson, L. Lacey Knowles\",\"doi\":\"10.1073/pnas.2410941122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many widespread plant taxa of western North America have diversified into phenotypically and genetically divergent lineages due to complex biogeographic histories across heterogeneous landscapes. Mosaic hybrid zones can form when geographically co-occurring, yet environmentally distinct, lineages cross-pollinate and form hybrids that occupy unique environmental niches absent of a geographic cline. This expands the total environmental space across which parental and hybrid individuals grow, resulting in larger, less fragmented geographic distributions. Here, we highlight hybridization mosaics across three study systems containing taxa critical to widespread plant communities in western North America: <jats:italic toggle=\\\"yes\\\">Ericameria nauseosa</jats:italic> , <jats:italic toggle=\\\"yes\\\">Artemisia tridentata</jats:italic> , and <jats:italic toggle=\\\"yes\\\">Sphaeralcea fendleri</jats:italic> . The systems contain diverged taxa that co-occur across the landscape and hybridize readily. Hybridization among taxa has facilitated niche expansion into intermediate environments consistent with unique combinations of adaptive genetic variation, creating more continuity within each study system—study systems occupy ~820 to 270,000 km <jats:sup>2</jats:sup> more geographic area by virtue of hybridization. Furthermore, hybrids are predicted to play important roles in future climates, as they may occupy 8 to 475% larger distributions compared to present. Convergent patterns signal mosaic hybridization as an underappreciated mechanism with broad ecological and evolutionary ramifications. Leveraging mosaic hybridization may assist the creation of restoration management plans that aim to mitigate the deleterious effects of habitat fragmentation on ecosystems in the context of climate change.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2410941122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2410941122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Suturing fragmented landscapes: Mosaic hybrid zones in plants may facilitate ecosystem resiliency
Many widespread plant taxa of western North America have diversified into phenotypically and genetically divergent lineages due to complex biogeographic histories across heterogeneous landscapes. Mosaic hybrid zones can form when geographically co-occurring, yet environmentally distinct, lineages cross-pollinate and form hybrids that occupy unique environmental niches absent of a geographic cline. This expands the total environmental space across which parental and hybrid individuals grow, resulting in larger, less fragmented geographic distributions. Here, we highlight hybridization mosaics across three study systems containing taxa critical to widespread plant communities in western North America: Ericameria nauseosa , Artemisia tridentata , and Sphaeralcea fendleri . The systems contain diverged taxa that co-occur across the landscape and hybridize readily. Hybridization among taxa has facilitated niche expansion into intermediate environments consistent with unique combinations of adaptive genetic variation, creating more continuity within each study system—study systems occupy ~820 to 270,000 km 2 more geographic area by virtue of hybridization. Furthermore, hybrids are predicted to play important roles in future climates, as they may occupy 8 to 475% larger distributions compared to present. Convergent patterns signal mosaic hybridization as an underappreciated mechanism with broad ecological and evolutionary ramifications. Leveraging mosaic hybridization may assist the creation of restoration management plans that aim to mitigate the deleterious effects of habitat fragmentation on ecosystems in the context of climate change.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.