Su Young Ki, Jea Hwa Jang, Dong-Hoon Kim, Yong Taek Jeong
{"title":"c-Kit信号在神经损伤时赋予甜味细胞抗损伤能力","authors":"Su Young Ki, Jea Hwa Jang, Dong-Hoon Kim, Yong Taek Jeong","doi":"10.1038/s41368-025-00387-3","DOIUrl":null,"url":null,"abstract":"<p>Taste buds relay taste sensory information to the primary taste neurons but depend on those same neurons for essential components to maintain function. While denervation-induced taste bud degeneration and subsequent regeneration were discovered decades ago, the mechanisms underlying these phenomena (e.g., heterogenous cellular responses to nerve injury and the signaling pathways involved) remain poorly understood. Here, using mouse genetics, nerve injury models, pharmacologic manipulation, and taste bud organoid models, we identify a specific subpopulation of taste cells, predominantly c-Kit-expressing sweet cells, that exhibit superior resistance to nerve injury. We found the c-Kit inhibitor imatinib selectively reduced the number of residual c-Kit-expressing sweet cells at post-operation week 2, subsequently attenuating the re-emergence of other type II cells by post-operation week 4. In taste bud organoids, c-Kit-expressing cells were resistant to R-spondin withdrawal but susceptible to imatinib, while other taste cell types showed the opposite behavior. We also observed a distinct population of residual taste cells that acquired stem-like properties, generating clonal descendent cells among suprabasal keratinocytes independent of c-Kit signaling. Together, our findings reveal that c-Kit signaling confers resilience on c-Kit-expressing sweet cells and supports the broader reconstruction of taste buds during the later regenerative stage following nerve injury.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"23 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"c-Kit signaling confers damage-resistance to sweet taste cells upon nerve injury\",\"authors\":\"Su Young Ki, Jea Hwa Jang, Dong-Hoon Kim, Yong Taek Jeong\",\"doi\":\"10.1038/s41368-025-00387-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Taste buds relay taste sensory information to the primary taste neurons but depend on those same neurons for essential components to maintain function. While denervation-induced taste bud degeneration and subsequent regeneration were discovered decades ago, the mechanisms underlying these phenomena (e.g., heterogenous cellular responses to nerve injury and the signaling pathways involved) remain poorly understood. Here, using mouse genetics, nerve injury models, pharmacologic manipulation, and taste bud organoid models, we identify a specific subpopulation of taste cells, predominantly c-Kit-expressing sweet cells, that exhibit superior resistance to nerve injury. We found the c-Kit inhibitor imatinib selectively reduced the number of residual c-Kit-expressing sweet cells at post-operation week 2, subsequently attenuating the re-emergence of other type II cells by post-operation week 4. In taste bud organoids, c-Kit-expressing cells were resistant to R-spondin withdrawal but susceptible to imatinib, while other taste cell types showed the opposite behavior. We also observed a distinct population of residual taste cells that acquired stem-like properties, generating clonal descendent cells among suprabasal keratinocytes independent of c-Kit signaling. Together, our findings reveal that c-Kit signaling confers resilience on c-Kit-expressing sweet cells and supports the broader reconstruction of taste buds during the later regenerative stage following nerve injury.</p>\",\"PeriodicalId\":14191,\"journal\":{\"name\":\"International Journal of Oral Science\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Oral Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41368-025-00387-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-025-00387-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
c-Kit signaling confers damage-resistance to sweet taste cells upon nerve injury
Taste buds relay taste sensory information to the primary taste neurons but depend on those same neurons for essential components to maintain function. While denervation-induced taste bud degeneration and subsequent regeneration were discovered decades ago, the mechanisms underlying these phenomena (e.g., heterogenous cellular responses to nerve injury and the signaling pathways involved) remain poorly understood. Here, using mouse genetics, nerve injury models, pharmacologic manipulation, and taste bud organoid models, we identify a specific subpopulation of taste cells, predominantly c-Kit-expressing sweet cells, that exhibit superior resistance to nerve injury. We found the c-Kit inhibitor imatinib selectively reduced the number of residual c-Kit-expressing sweet cells at post-operation week 2, subsequently attenuating the re-emergence of other type II cells by post-operation week 4. In taste bud organoids, c-Kit-expressing cells were resistant to R-spondin withdrawal but susceptible to imatinib, while other taste cell types showed the opposite behavior. We also observed a distinct population of residual taste cells that acquired stem-like properties, generating clonal descendent cells among suprabasal keratinocytes independent of c-Kit signaling. Together, our findings reveal that c-Kit signaling confers resilience on c-Kit-expressing sweet cells and supports the broader reconstruction of taste buds during the later regenerative stage following nerve injury.
期刊介绍:
The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to:
Oral microbiology
Oral and maxillofacial oncology
Cariology
Oral inflammation and infection
Dental stem cells and regenerative medicine
Craniofacial surgery
Dental material
Oral biomechanics
Oral, dental, and maxillofacial genetic and developmental diseases
Craniofacial bone research
Craniofacial-related biomaterials
Temporomandibular joint disorder and osteoarthritis
The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.