基于混合的数据增强,增强少量SSVEP检测性能。

IF 3.8
Jiayang Huang, Pengfei Yang, Bang Xiong, Yidan Lv, Quan Wang, Bo Wan, Zhi-Qiang Zhang
{"title":"基于混合的数据增强,增强少量SSVEP检测性能。","authors":"Jiayang Huang, Pengfei Yang, Bang Xiong, Yidan Lv, Quan Wang, Bo Wan, Zhi-Qiang Zhang","doi":"10.1088/1741-2552/adf467","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Few-shot steady-state visual evoked potential (SSVEP) detection remains a major challenge in brain-computer interface (BCI) systems, as limited calibration data often leads to degraded performance. This study aims to enhance few-shot SSVEP detection through an effective data augmentation (DA) strategy.<i>Approach.</i>We propose a mixup-based DA method that generates synthetic trials by linearly interpolating between real SSVEP signals extracted using a sliding window strategy. The interpolation weight is optimized by maximizing the similarity between the mixed signal and both the template and reference signals. The augmented data is then used to train spatial filters for improved SSVEP detection.<i>Main results.</i>The proposed method was evaluated on two benchmark SSVEP datasets using task-related component analysis and incorporating neighboring stimuli data as spatial filters. Results demonstrate that the mixup-based augmentation significantly improves detection accuracy under few-shot conditions, outperforming existing augmentation and baseline methods.<i>Significance.</i>The mixup-based method offers an effective and practical solution for enhancing SSVEP decoding with limited data, reducing calibration time, and improving BCI systems' usability in real-world scenarios.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixup-based data augmentation for enhancing few-shot SSVEP detection performance.\",\"authors\":\"Jiayang Huang, Pengfei Yang, Bang Xiong, Yidan Lv, Quan Wang, Bo Wan, Zhi-Qiang Zhang\",\"doi\":\"10.1088/1741-2552/adf467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Few-shot steady-state visual evoked potential (SSVEP) detection remains a major challenge in brain-computer interface (BCI) systems, as limited calibration data often leads to degraded performance. This study aims to enhance few-shot SSVEP detection through an effective data augmentation (DA) strategy.<i>Approach.</i>We propose a mixup-based DA method that generates synthetic trials by linearly interpolating between real SSVEP signals extracted using a sliding window strategy. The interpolation weight is optimized by maximizing the similarity between the mixed signal and both the template and reference signals. The augmented data is then used to train spatial filters for improved SSVEP detection.<i>Main results.</i>The proposed method was evaluated on two benchmark SSVEP datasets using task-related component analysis and incorporating neighboring stimuli data as spatial filters. Results demonstrate that the mixup-based augmentation significantly improves detection accuracy under few-shot conditions, outperforming existing augmentation and baseline methods.<i>Significance.</i>The mixup-based method offers an effective and practical solution for enhancing SSVEP decoding with limited data, reducing calibration time, and improving BCI systems' usability in real-world scenarios.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/adf467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adf467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:少量稳态视觉诱发电位(SSVEP)检测仍然是脑机接口(BCI)系统的主要挑战,因为有限的校准数据经常导致性能下降。本研究旨在通过一种有效的数据增强策略来增强少量SSVEP检测。方法:我们提出了一种基于混合的数据增强方法,该方法通过在使用滑动窗口策略提取的真实SSVEP信号之间进行线性插值来生成合成试验。通过最大化混合信号与模板和参考信号之间的相似性来优化插值权值。主要结果: ;在使用任务相关成分分析(TRCA)和INS-SF作为空间滤波器的两个基准SSVEP数据集上对所提出的方法进行了评估。结果表明,基于混合的增强方法显著提高了少镜头条件下的检测精度,优于现有的增强方法和基线方法。意义: ;基于混合的方法为在有限数据下增强SSVEP解码,减少校准时间,提高BCI系统在现实场景中的可用性提供了有效和实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixup-based data augmentation for enhancing few-shot SSVEP detection performance.

Objective.Few-shot steady-state visual evoked potential (SSVEP) detection remains a major challenge in brain-computer interface (BCI) systems, as limited calibration data often leads to degraded performance. This study aims to enhance few-shot SSVEP detection through an effective data augmentation (DA) strategy.Approach.We propose a mixup-based DA method that generates synthetic trials by linearly interpolating between real SSVEP signals extracted using a sliding window strategy. The interpolation weight is optimized by maximizing the similarity between the mixed signal and both the template and reference signals. The augmented data is then used to train spatial filters for improved SSVEP detection.Main results.The proposed method was evaluated on two benchmark SSVEP datasets using task-related component analysis and incorporating neighboring stimuli data as spatial filters. Results demonstrate that the mixup-based augmentation significantly improves detection accuracy under few-shot conditions, outperforming existing augmentation and baseline methods.Significance.The mixup-based method offers an effective and practical solution for enhancing SSVEP decoding with limited data, reducing calibration time, and improving BCI systems' usability in real-world scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信