综合突变扫描数据库改进T细胞受体交叉反应性预测。

IF 7.7
Cell systems Pub Date : 2025-08-20 Epub Date: 2025-07-25 DOI:10.1016/j.cels.2025.101345
Amitava Banerjee, David J Pattinson, Cornelia L Wincek, Paul Bunk, Armend Axhemi, Sarah R Chapin, Saket Navlakha, Hannah V Meyer
{"title":"综合突变扫描数据库改进T细胞受体交叉反应性预测。","authors":"Amitava Banerjee, David J Pattinson, Cornelia L Wincek, Paul Bunk, Armend Axhemi, Sarah R Chapin, Saket Navlakha, Hannah V Meyer","doi":"10.1016/j.cels.2025.101345","DOIUrl":null,"url":null,"abstract":"<p><p>Comprehensively mapping all targets of a T cell receptor (TCR) is important for predicting pathogenic escape and off-target effects of TCR therapies. However, this mapping has been challenging due to lack of unbiased benchmarking datasets and computational methods sensitive to small-peptide mutations. To address this, we curated the benchmark for activation of T cells with cross-reactive avidity for epitopes (BATCAVE) database, encompassing near-complete single-amino-acid mutational assays, centered around 25 immunogenic epitopes, across both major histocompatibility complex classes, against 151 human and mouse TCRs, containing 22,000+ TCR-peptide pairs in total. We then introduce Bayesian inference of activation of TCR by mutant antigens (BATMAN), an interpretable Bayesian model, trained on BATCAVE, for predicting the peptides that activate a TCR, and an active learning extension, which efficiently maps targets of a novel TCR by selecting a few peptides to assay. We show that BATMAN outperforms existing methods, reveals structural and biochemical predictors of TCR-peptide interactions, and can predict polyclonal T cell responses and TCR targets with high sequence dissimilarity. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101345"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T cell receptor cross-reactivity prediction improved by a comprehensive mutational scan database.\",\"authors\":\"Amitava Banerjee, David J Pattinson, Cornelia L Wincek, Paul Bunk, Armend Axhemi, Sarah R Chapin, Saket Navlakha, Hannah V Meyer\",\"doi\":\"10.1016/j.cels.2025.101345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Comprehensively mapping all targets of a T cell receptor (TCR) is important for predicting pathogenic escape and off-target effects of TCR therapies. However, this mapping has been challenging due to lack of unbiased benchmarking datasets and computational methods sensitive to small-peptide mutations. To address this, we curated the benchmark for activation of T cells with cross-reactive avidity for epitopes (BATCAVE) database, encompassing near-complete single-amino-acid mutational assays, centered around 25 immunogenic epitopes, across both major histocompatibility complex classes, against 151 human and mouse TCRs, containing 22,000+ TCR-peptide pairs in total. We then introduce Bayesian inference of activation of TCR by mutant antigens (BATMAN), an interpretable Bayesian model, trained on BATCAVE, for predicting the peptides that activate a TCR, and an active learning extension, which efficiently maps targets of a novel TCR by selecting a few peptides to assay. We show that BATMAN outperforms existing methods, reveals structural and biochemical predictors of TCR-peptide interactions, and can predict polyclonal T cell responses and TCR targets with high sequence dissimilarity. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101345\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全面定位T细胞受体(TCR)的所有靶标对于预测TCR治疗的致病性逃逸和脱靶效应非常重要。然而,由于缺乏无偏基准数据集和对小肽突变敏感的计算方法,这种映射一直具有挑战性。为了解决这个问题,我们策划了具有表位交叉反应性的T细胞激活基准(BATCAVE)数据库,包括接近完整的单氨基酸突变测定,以25个免疫原性表位为中心,跨越两个主要的组织相容性复合体类别,针对151个人和小鼠tcr,总共包含22,000多个tcr肽对。然后,我们介绍了突变抗原激活TCR的贝叶斯推断(BATMAN),一个可解释的贝叶斯模型,在BATCAVE上训练,用于预测激活TCR的肽,以及一个主动学习扩展,通过选择一些肽进行分析,有效地绘制新TCR的靶标。我们发现BATMAN优于现有方法,揭示了TCR-肽相互作用的结构和生化预测因子,并且可以预测具有高序列不相似性的多克隆T细胞反应和TCR靶点。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
T cell receptor cross-reactivity prediction improved by a comprehensive mutational scan database.

Comprehensively mapping all targets of a T cell receptor (TCR) is important for predicting pathogenic escape and off-target effects of TCR therapies. However, this mapping has been challenging due to lack of unbiased benchmarking datasets and computational methods sensitive to small-peptide mutations. To address this, we curated the benchmark for activation of T cells with cross-reactive avidity for epitopes (BATCAVE) database, encompassing near-complete single-amino-acid mutational assays, centered around 25 immunogenic epitopes, across both major histocompatibility complex classes, against 151 human and mouse TCRs, containing 22,000+ TCR-peptide pairs in total. We then introduce Bayesian inference of activation of TCR by mutant antigens (BATMAN), an interpretable Bayesian model, trained on BATCAVE, for predicting the peptides that activate a TCR, and an active learning extension, which efficiently maps targets of a novel TCR by selecting a few peptides to assay. We show that BATMAN outperforms existing methods, reveals structural and biochemical predictors of TCR-peptide interactions, and can predict polyclonal T cell responses and TCR targets with high sequence dissimilarity. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信