用于处理和分析多路复用图像的协议提高了人体组织中淋巴细胞的识别和空间结构。

IF 1.3 Q4 BIOCHEMICAL RESEARCH METHODS
Justin A Smith, Drew T Bloss, MacKenzie D Williams, Amanda L Posgai, Todd M Brusko, Mark A Atkinson, Clive H Wasserfall, Maigan A Brusko
{"title":"用于处理和分析多路复用图像的协议提高了人体组织中淋巴细胞的识别和空间结构。","authors":"Justin A Smith, Drew T Bloss, MacKenzie D Williams, Amanda L Posgai, Todd M Brusko, Mark A Atkinson, Clive H Wasserfall, Maigan A Brusko","doi":"10.1016/j.xpro.2025.103976","DOIUrl":null,"url":null,"abstract":"<p><p>Multiplexed images of human lymphatic tissue are extensively preprocessed before cell phenotyping and spatial analysis. Here, we present KINTSUGI (knowledge integration with new technologies: simplified user-guided image processing), a protocol designed to interactively engage the user in each processing step to ensure quality control. We describe steps for parameter tuning and batch processing of raw image data including illumination correction, stitching, deconvolution, 3D-2D conversion, registration, and autofluorescence subtraction. We then detail procedures for segmentation, feature extraction, phenotyping, and spatial analysis.</p>","PeriodicalId":34214,"journal":{"name":"STAR Protocols","volume":"6 3","pages":"103976"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protocol for processing and analyzing multiplexed images improves lymphatic cell identification and spatial architecture in human tissue.\",\"authors\":\"Justin A Smith, Drew T Bloss, MacKenzie D Williams, Amanda L Posgai, Todd M Brusko, Mark A Atkinson, Clive H Wasserfall, Maigan A Brusko\",\"doi\":\"10.1016/j.xpro.2025.103976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiplexed images of human lymphatic tissue are extensively preprocessed before cell phenotyping and spatial analysis. Here, we present KINTSUGI (knowledge integration with new technologies: simplified user-guided image processing), a protocol designed to interactively engage the user in each processing step to ensure quality control. We describe steps for parameter tuning and batch processing of raw image data including illumination correction, stitching, deconvolution, 3D-2D conversion, registration, and autofluorescence subtraction. We then detail procedures for segmentation, feature extraction, phenotyping, and spatial analysis.</p>\",\"PeriodicalId\":34214,\"journal\":{\"name\":\"STAR Protocols\",\"volume\":\"6 3\",\"pages\":\"103976\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STAR Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xpro.2025.103976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STAR Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xpro.2025.103976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在细胞表型和空间分析之前,人类淋巴组织的多路复用图像进行了广泛的预处理。在这里,我们提出了KINTSUGI(与新技术的知识集成:简化用户引导的图像处理),这是一个旨在让用户交互参与每个处理步骤以确保质量控制的协议。我们描述了参数调整和批量处理原始图像数据的步骤,包括照明校正、拼接、反卷积、3D-2D转换、配准和自荧光减法。然后我们详细介绍了分割、特征提取、表型和空间分析的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protocol for processing and analyzing multiplexed images improves lymphatic cell identification and spatial architecture in human tissue.

Multiplexed images of human lymphatic tissue are extensively preprocessed before cell phenotyping and spatial analysis. Here, we present KINTSUGI (knowledge integration with new technologies: simplified user-guided image processing), a protocol designed to interactively engage the user in each processing step to ensure quality control. We describe steps for parameter tuning and batch processing of raw image data including illumination correction, stitching, deconvolution, 3D-2D conversion, registration, and autofluorescence subtraction. We then detail procedures for segmentation, feature extraction, phenotyping, and spatial analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
STAR Protocols
STAR Protocols Biochemistry, Genetics and Molecular Biology-General Biochemistry, Genetics and Molecular Biology
CiteScore
2.00
自引率
0.00%
发文量
789
审稿时长
10 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信