{"title":"用Morlet小波神经网络模拟MHD Williamson纳米流体在非线性拉伸表面上的交叉扩散。","authors":"Khalid Arif, Syed Tauseef Saeed, Muhammad Naeem Aslam, Jihad Younis, Arshad Riaz, Salman Saleem","doi":"10.1038/s41598-025-06912-y","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a new numerical technique was developed to investigate magnetohydrodynamic (MHD) flow of Williamson nanofluid past a nonlinear stretching surface imbedded in a porous medium laden with Soret and Dufour effects. The control equations, which are highly nonlinear partial differential equations, are first converted into ordinary differential equation (ODEs) using similarity transformation and then are solved effectively by the hybrid computational method applying Morlet Wavelet Neural Networks (MWNNs) combined with a heuristic optimizers neural network and particle swarm as MWNNs-PSO-NNA. The proposed MWNNs-PSO-NNA shows a very low mean square error and Theil's Inequality Coefficient indicating that the accuracy of the model. To check the convergence and validation of the proposed approach, computing the hundred independent runs for statistical metrics. The fitness function, MSE and TIC values ranging from 10<sup>-07</sup> to 10<sup>-05</sup>, 10<sup>-09</sup> to 10<sup>-07</sup> and 10<sup>-06</sup> to 10<sup>-04</sup> respectively. It is found that increasing the effects of the Williamson number, magnetic parameter, porosity and stretching index inhibit the velocity field while Brownian motion as well as the Williamson number enhances the temperature profile. The concentration rises with Soret and Brownian motion parameters but diminishes with intensified thermophoresis and magnetic influences. These findings confirm that the proposed hybrid model is not only computationally robust but also highly effective for solving complex fluid flow problems in engineering and applied sciences.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27287"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297273/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling cross-diffusion in MHD Williamson nanofluid flow over a nonlinear stretching surface via Morlet wavelet neural networks.\",\"authors\":\"Khalid Arif, Syed Tauseef Saeed, Muhammad Naeem Aslam, Jihad Younis, Arshad Riaz, Salman Saleem\",\"doi\":\"10.1038/s41598-025-06912-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a new numerical technique was developed to investigate magnetohydrodynamic (MHD) flow of Williamson nanofluid past a nonlinear stretching surface imbedded in a porous medium laden with Soret and Dufour effects. The control equations, which are highly nonlinear partial differential equations, are first converted into ordinary differential equation (ODEs) using similarity transformation and then are solved effectively by the hybrid computational method applying Morlet Wavelet Neural Networks (MWNNs) combined with a heuristic optimizers neural network and particle swarm as MWNNs-PSO-NNA. The proposed MWNNs-PSO-NNA shows a very low mean square error and Theil's Inequality Coefficient indicating that the accuracy of the model. To check the convergence and validation of the proposed approach, computing the hundred independent runs for statistical metrics. The fitness function, MSE and TIC values ranging from 10<sup>-07</sup> to 10<sup>-05</sup>, 10<sup>-09</sup> to 10<sup>-07</sup> and 10<sup>-06</sup> to 10<sup>-04</sup> respectively. It is found that increasing the effects of the Williamson number, magnetic parameter, porosity and stretching index inhibit the velocity field while Brownian motion as well as the Williamson number enhances the temperature profile. The concentration rises with Soret and Brownian motion parameters but diminishes with intensified thermophoresis and magnetic influences. These findings confirm that the proposed hybrid model is not only computationally robust but also highly effective for solving complex fluid flow problems in engineering and applied sciences.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27287\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297273/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-06912-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-06912-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Modelling cross-diffusion in MHD Williamson nanofluid flow over a nonlinear stretching surface via Morlet wavelet neural networks.
In this paper, a new numerical technique was developed to investigate magnetohydrodynamic (MHD) flow of Williamson nanofluid past a nonlinear stretching surface imbedded in a porous medium laden with Soret and Dufour effects. The control equations, which are highly nonlinear partial differential equations, are first converted into ordinary differential equation (ODEs) using similarity transformation and then are solved effectively by the hybrid computational method applying Morlet Wavelet Neural Networks (MWNNs) combined with a heuristic optimizers neural network and particle swarm as MWNNs-PSO-NNA. The proposed MWNNs-PSO-NNA shows a very low mean square error and Theil's Inequality Coefficient indicating that the accuracy of the model. To check the convergence and validation of the proposed approach, computing the hundred independent runs for statistical metrics. The fitness function, MSE and TIC values ranging from 10-07 to 10-05, 10-09 to 10-07 and 10-06 to 10-04 respectively. It is found that increasing the effects of the Williamson number, magnetic parameter, porosity and stretching index inhibit the velocity field while Brownian motion as well as the Williamson number enhances the temperature profile. The concentration rises with Soret and Brownian motion parameters but diminishes with intensified thermophoresis and magnetic influences. These findings confirm that the proposed hybrid model is not only computationally robust but also highly effective for solving complex fluid flow problems in engineering and applied sciences.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.