Eman Mahmoud, Salem Alkhalaf, Tomonobu Senjyu, Masahiro Furukakoi, Ashraf Hemeida, Ghada Abozaid
{"title":"一种用于图像分割中优化多级阈值的混合元启发式算法。","authors":"Eman Mahmoud, Salem Alkhalaf, Tomonobu Senjyu, Masahiro Furukakoi, Ashraf Hemeida, Ghada Abozaid","doi":"10.1038/s41598-025-12142-z","DOIUrl":null,"url":null,"abstract":"<p><p>Image segmentation is a critical task in image processing with applications in various domains, including industry and medicine. However, multilevel thresholding, a widely used segmentation technique, suffers from high computational complexity due to the exhaustive search for optimal thresholds. This paper addresses this challenge by proposing a hybrid Genetic Algorithm-Archimedes Optimization Algorithm (GAAOA), further enhanced with a Lévy flight function (GAAOA-Lévy), to improve efficiency and accuracy in multilevel thresholding. The integration of GA's crossover mechanism strengthens local search capabilities, leading to optimal segmentation with fewer iterations. The proposed algorithm is evaluated using standard benchmark images and compared against well-known optimization techniques. Experimental results demonstrate that GAAOA-Lévy outperforms existing methods in terms of Peak Signal-to-Noise Ratio (PSNR), computational efficiency, and convergence speed, particularly excelling in three-level thresholding while reducing computational costs for higher thresholds.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27232"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAAOA-Lévy: a hybrid metaheuristic for optimized multilevel thresholding in image segmentation.\",\"authors\":\"Eman Mahmoud, Salem Alkhalaf, Tomonobu Senjyu, Masahiro Furukakoi, Ashraf Hemeida, Ghada Abozaid\",\"doi\":\"10.1038/s41598-025-12142-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image segmentation is a critical task in image processing with applications in various domains, including industry and medicine. However, multilevel thresholding, a widely used segmentation technique, suffers from high computational complexity due to the exhaustive search for optimal thresholds. This paper addresses this challenge by proposing a hybrid Genetic Algorithm-Archimedes Optimization Algorithm (GAAOA), further enhanced with a Lévy flight function (GAAOA-Lévy), to improve efficiency and accuracy in multilevel thresholding. The integration of GA's crossover mechanism strengthens local search capabilities, leading to optimal segmentation with fewer iterations. The proposed algorithm is evaluated using standard benchmark images and compared against well-known optimization techniques. Experimental results demonstrate that GAAOA-Lévy outperforms existing methods in terms of Peak Signal-to-Noise Ratio (PSNR), computational efficiency, and convergence speed, particularly excelling in three-level thresholding while reducing computational costs for higher thresholds.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27232\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12142-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12142-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
GAAOA-Lévy: a hybrid metaheuristic for optimized multilevel thresholding in image segmentation.
Image segmentation is a critical task in image processing with applications in various domains, including industry and medicine. However, multilevel thresholding, a widely used segmentation technique, suffers from high computational complexity due to the exhaustive search for optimal thresholds. This paper addresses this challenge by proposing a hybrid Genetic Algorithm-Archimedes Optimization Algorithm (GAAOA), further enhanced with a Lévy flight function (GAAOA-Lévy), to improve efficiency and accuracy in multilevel thresholding. The integration of GA's crossover mechanism strengthens local search capabilities, leading to optimal segmentation with fewer iterations. The proposed algorithm is evaluated using standard benchmark images and compared against well-known optimization techniques. Experimental results demonstrate that GAAOA-Lévy outperforms existing methods in terms of Peak Signal-to-Noise Ratio (PSNR), computational efficiency, and convergence speed, particularly excelling in three-level thresholding while reducing computational costs for higher thresholds.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.