在空气过滤应用中优化静电纺聚氨酯纳米纤维膜的混合建模。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Majid Sohrabi, Milad Razbin
{"title":"在空气过滤应用中优化静电纺聚氨酯纳米纤维膜的混合建模。","authors":"Majid Sohrabi, Milad Razbin","doi":"10.1038/s41598-025-13159-0","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofibers have gained recognition as promising materials for air filtration due to their high surface area-to-volume ratio, adjustable porosity, and exceptional mechanical properties. However, optimizing their structural characteristics to maximize filtration efficiency while minimizing pressure drop remains challenging due to the complexity of the electrospinning process. This study presents an artificial intelligence-based methodology to establish relationships between electrospinning parameters, nanofiber morphology, and filtration performance. An advanced statistical approach is used to systematically collect and analyze data, followed by modeling these relationships using artificial neural networks (ANN) and analytical formulas to enhance predictive accuracy. A genetic algorithm (GA) is subsequently utilized to refine electrospinning parameters, facilitating the production of nanofibers with enhanced filtration efficiency and optimized airflow resistance. The optimized nanofiber membranes are validated experimentally to assess their real-world performance. The findings demonstrate the potential of AI-driven design in fine-tuning nanofiber structures for advanced air filtration applications. The optimized sample achieved a filtration efficiency of 96%, a pressure drop of 110.23 Pa, and a quality factor of 0.0297. This study underscores the effectiveness of combining AI with electrospinning to develop high-performance air filtration materials.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"27306"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297687/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid modeling for optimizing electrospun polyurethane nanofibrous membranes in air filtration applications.\",\"authors\":\"Majid Sohrabi, Milad Razbin\",\"doi\":\"10.1038/s41598-025-13159-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanofibers have gained recognition as promising materials for air filtration due to their high surface area-to-volume ratio, adjustable porosity, and exceptional mechanical properties. However, optimizing their structural characteristics to maximize filtration efficiency while minimizing pressure drop remains challenging due to the complexity of the electrospinning process. This study presents an artificial intelligence-based methodology to establish relationships between electrospinning parameters, nanofiber morphology, and filtration performance. An advanced statistical approach is used to systematically collect and analyze data, followed by modeling these relationships using artificial neural networks (ANN) and analytical formulas to enhance predictive accuracy. A genetic algorithm (GA) is subsequently utilized to refine electrospinning parameters, facilitating the production of nanofibers with enhanced filtration efficiency and optimized airflow resistance. The optimized nanofiber membranes are validated experimentally to assess their real-world performance. The findings demonstrate the potential of AI-driven design in fine-tuning nanofiber structures for advanced air filtration applications. The optimized sample achieved a filtration efficiency of 96%, a pressure drop of 110.23 Pa, and a quality factor of 0.0297. This study underscores the effectiveness of combining AI with electrospinning to develop high-performance air filtration materials.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"27306\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297687/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-13159-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-13159-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

纳米纤维由于其高表面积体积比、可调节的孔隙率和优异的机械性能而被公认为有前途的空气过滤材料。然而,由于静电纺丝工艺的复杂性,优化其结构特性以最大化过滤效率同时最小化压降仍然是一项挑战。本研究提出了一种基于人工智能的方法来建立静电纺丝参数、纳米纤维形态和过滤性能之间的关系。采用先进的统计方法系统地收集和分析数据,然后使用人工神经网络(ANN)和分析公式对这些关系进行建模,以提高预测的准确性。采用遗传算法优化静电纺丝工艺参数,制备出过滤效率高、气流阻力优化的纳米纤维。通过实验验证了优化后的纳米纤维膜的实际性能。研究结果表明,人工智能驱动设计在微调纳米纤维结构方面具有潜力,可用于先进的空气过滤应用。优化后的样品过滤效率为96%,压降为110.23 Pa,质量因子为0.0297。这项研究强调了人工智能与静电纺丝相结合开发高性能空气过滤材料的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid modeling for optimizing electrospun polyurethane nanofibrous membranes in air filtration applications.

Hybrid modeling for optimizing electrospun polyurethane nanofibrous membranes in air filtration applications.

Hybrid modeling for optimizing electrospun polyurethane nanofibrous membranes in air filtration applications.

Hybrid modeling for optimizing electrospun polyurethane nanofibrous membranes in air filtration applications.

Nanofibers have gained recognition as promising materials for air filtration due to their high surface area-to-volume ratio, adjustable porosity, and exceptional mechanical properties. However, optimizing their structural characteristics to maximize filtration efficiency while minimizing pressure drop remains challenging due to the complexity of the electrospinning process. This study presents an artificial intelligence-based methodology to establish relationships between electrospinning parameters, nanofiber morphology, and filtration performance. An advanced statistical approach is used to systematically collect and analyze data, followed by modeling these relationships using artificial neural networks (ANN) and analytical formulas to enhance predictive accuracy. A genetic algorithm (GA) is subsequently utilized to refine electrospinning parameters, facilitating the production of nanofibers with enhanced filtration efficiency and optimized airflow resistance. The optimized nanofiber membranes are validated experimentally to assess their real-world performance. The findings demonstrate the potential of AI-driven design in fine-tuning nanofiber structures for advanced air filtration applications. The optimized sample achieved a filtration efficiency of 96%, a pressure drop of 110.23 Pa, and a quality factor of 0.0297. This study underscores the effectiveness of combining AI with electrospinning to develop high-performance air filtration materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信