激发态学习的表面跳跃嵌套实例训练集。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Robin Curth, Theodor E Röhrkasten, Carolin Müller, Julia Westermayr
{"title":"激发态学习的表面跳跃嵌套实例训练集。","authors":"Robin Curth, Theodor E Röhrkasten, Carolin Müller, Julia Westermayr","doi":"10.1038/s41597-025-05443-5","DOIUrl":null,"url":null,"abstract":"<p><p>Theoretical studies of molecular photochemistry and photophysics are essential for understanding fundamental natural processes but rely on computationally demanding quantum chemical calculations. This complexity limits both direct simulations and the development of machine learning (ML) models trained on this data. To address this, we introduce SHNITSEL, a data repository containing 418,870 ab-initio data points of nine organic molecules in their ground and electronically excited states. Each data point includes high-accuracy quantum chemical properties such as energies, forces, and dipole moments in the ground state and electronically excited singlet or triplet states as well as properties that arise from the coupling of electronic states, namely nonadiabatic couplings, transition dipoles, or spin-orbit couplings. Generated with state-of-the-art methods, SHNITSEL provides a robust benchmark for ML models and facilitates the development of ML-based approaches for excited state properties.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"1300"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297575/pdf/","citationCount":"0","resultStr":"{\"title\":\"Surface Hopping Nested Instances Training Set for Excited-state Learning.\",\"authors\":\"Robin Curth, Theodor E Röhrkasten, Carolin Müller, Julia Westermayr\",\"doi\":\"10.1038/s41597-025-05443-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Theoretical studies of molecular photochemistry and photophysics are essential for understanding fundamental natural processes but rely on computationally demanding quantum chemical calculations. This complexity limits both direct simulations and the development of machine learning (ML) models trained on this data. To address this, we introduce SHNITSEL, a data repository containing 418,870 ab-initio data points of nine organic molecules in their ground and electronically excited states. Each data point includes high-accuracy quantum chemical properties such as energies, forces, and dipole moments in the ground state and electronically excited singlet or triplet states as well as properties that arise from the coupling of electronic states, namely nonadiabatic couplings, transition dipoles, or spin-orbit couplings. Generated with state-of-the-art methods, SHNITSEL provides a robust benchmark for ML models and facilitates the development of ML-based approaches for excited state properties.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"1300\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-05443-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05443-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

分子光化学和光物理的理论研究对于理解基本的自然过程是必不可少的,但依赖于计算要求很高的量子化学计算。这种复杂性限制了直接模拟和在这些数据上训练的机器学习(ML)模型的开发。为了解决这个问题,我们引入了SHNITSEL,一个包含9个有机分子在基态和电子激发态的418,870个从头算数据点的数据存储库。每个数据点包括高精度的量子化学性质,如基态和电子激发的单重态或三重态中的能量、力和偶极矩,以及由电子态耦合产生的性质,即非绝热耦合、跃迁偶极子或自旋轨道耦合。SHNITSEL采用最先进的方法生成,为ML模型提供了强大的基准,并促进了基于ML的激发态属性方法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface Hopping Nested Instances Training Set for Excited-state Learning.

Theoretical studies of molecular photochemistry and photophysics are essential for understanding fundamental natural processes but rely on computationally demanding quantum chemical calculations. This complexity limits both direct simulations and the development of machine learning (ML) models trained on this data. To address this, we introduce SHNITSEL, a data repository containing 418,870 ab-initio data points of nine organic molecules in their ground and electronically excited states. Each data point includes high-accuracy quantum chemical properties such as energies, forces, and dipole moments in the ground state and electronically excited singlet or triplet states as well as properties that arise from the coupling of electronic states, namely nonadiabatic couplings, transition dipoles, or spin-orbit couplings. Generated with state-of-the-art methods, SHNITSEL provides a robust benchmark for ML models and facilitates the development of ML-based approaches for excited state properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信