Abi G Yates, Steven Dierksmeier, Yvonne Couch, Timothy D W Claridge, Fay Probert, Daniel C Anthony, Marc J Ruitenberg
{"title":"损伤程度和严重程度严重影响脊髓损伤的代谢组学特征。","authors":"Abi G Yates, Steven Dierksmeier, Yvonne Couch, Timothy D W Claridge, Fay Probert, Daniel C Anthony, Marc J Ruitenberg","doi":"10.1093/jnen/nlaf082","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in the peripheral metabolome, particularly in the blood, may provide biomarkers for assessing lesion severity and predicting outcomes after spinal cord injury (SCI). Using principal component analysis (PCA) and Orthogonal Partial Least Squares Discriminatory Analysis (OPLS-DA), we sought to discover how SCI severity and location acutely affect the nuclear magnetic resonance-acquired metabolome of the blood, spinal cord, and liver at 6 h post-SCI in mice. Unsupervised PCA of the spinal cord metabolome separated mild (30 kdyne) and severe (70 kdyne) contusion injury groups but did not distinguish between lesion level. However, OPLS-DA could discriminate thoracic level T2 from T9 lesions in both blood plasma (accuracy 86 ± 6%) and liver (accuracy 89 ± 5%) samples. These differences were dependent on alterations in energy metabolites (lactate and glucose), lipoproteins, and lipids. Lactate was the most discriminatory between mild and severe injury at T2, whereas overlapping valine/proline resonances were most discriminatory between injury severities at T9. Plasma lactate correlated with blood-spinal cord barrier breakdown and plasma glucose with microglial density. We propose that peripheral biofluid metabolites can serve as biomarkers of SCI severity and associated pathology at the lesion site; their predictive value is most accurate when the injury level is also considered.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lesion level and severity acutely influence metabolomic profiles in spinal cord injury.\",\"authors\":\"Abi G Yates, Steven Dierksmeier, Yvonne Couch, Timothy D W Claridge, Fay Probert, Daniel C Anthony, Marc J Ruitenberg\",\"doi\":\"10.1093/jnen/nlaf082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Changes in the peripheral metabolome, particularly in the blood, may provide biomarkers for assessing lesion severity and predicting outcomes after spinal cord injury (SCI). Using principal component analysis (PCA) and Orthogonal Partial Least Squares Discriminatory Analysis (OPLS-DA), we sought to discover how SCI severity and location acutely affect the nuclear magnetic resonance-acquired metabolome of the blood, spinal cord, and liver at 6 h post-SCI in mice. Unsupervised PCA of the spinal cord metabolome separated mild (30 kdyne) and severe (70 kdyne) contusion injury groups but did not distinguish between lesion level. However, OPLS-DA could discriminate thoracic level T2 from T9 lesions in both blood plasma (accuracy 86 ± 6%) and liver (accuracy 89 ± 5%) samples. These differences were dependent on alterations in energy metabolites (lactate and glucose), lipoproteins, and lipids. Lactate was the most discriminatory between mild and severe injury at T2, whereas overlapping valine/proline resonances were most discriminatory between injury severities at T9. Plasma lactate correlated with blood-spinal cord barrier breakdown and plasma glucose with microglial density. We propose that peripheral biofluid metabolites can serve as biomarkers of SCI severity and associated pathology at the lesion site; their predictive value is most accurate when the injury level is also considered.</p>\",\"PeriodicalId\":16682,\"journal\":{\"name\":\"Journal of Neuropathology and Experimental Neurology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuropathology and Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jnen/nlaf082\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology and Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlaf082","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Lesion level and severity acutely influence metabolomic profiles in spinal cord injury.
Changes in the peripheral metabolome, particularly in the blood, may provide biomarkers for assessing lesion severity and predicting outcomes after spinal cord injury (SCI). Using principal component analysis (PCA) and Orthogonal Partial Least Squares Discriminatory Analysis (OPLS-DA), we sought to discover how SCI severity and location acutely affect the nuclear magnetic resonance-acquired metabolome of the blood, spinal cord, and liver at 6 h post-SCI in mice. Unsupervised PCA of the spinal cord metabolome separated mild (30 kdyne) and severe (70 kdyne) contusion injury groups but did not distinguish between lesion level. However, OPLS-DA could discriminate thoracic level T2 from T9 lesions in both blood plasma (accuracy 86 ± 6%) and liver (accuracy 89 ± 5%) samples. These differences were dependent on alterations in energy metabolites (lactate and glucose), lipoproteins, and lipids. Lactate was the most discriminatory between mild and severe injury at T2, whereas overlapping valine/proline resonances were most discriminatory between injury severities at T9. Plasma lactate correlated with blood-spinal cord barrier breakdown and plasma glucose with microglial density. We propose that peripheral biofluid metabolites can serve as biomarkers of SCI severity and associated pathology at the lesion site; their predictive value is most accurate when the injury level is also considered.
期刊介绍:
Journal of Neuropathology & Experimental Neurology is the official journal of the American Association of Neuropathologists, Inc. (AANP). The journal publishes peer-reviewed studies on neuropathology and experimental neuroscience, book reviews, letters, and Association news, covering a broad spectrum of fields in basic neuroscience with an emphasis on human neurological diseases. It is written by and for neuropathologists, neurologists, neurosurgeons, pathologists, psychiatrists, and basic neuroscientists from around the world. Publication has been continuous since 1942.