Yukina Iwamoto , Seiko Yamakoshi , Akiyo Sekimoto , Koji Hosomi , Takashi Toyama , Yoshiro Saito , Jun Kunisawa , Nobuyuki Takahashi , Eikan Mishima , Emiko Sato
{"title":"乳铁蛋白在腺嘌呤诱导的慢性肾病小鼠模型中减轻肾纤维化和尿毒症性肌肉减少症。","authors":"Yukina Iwamoto , Seiko Yamakoshi , Akiyo Sekimoto , Koji Hosomi , Takashi Toyama , Yoshiro Saito , Jun Kunisawa , Nobuyuki Takahashi , Eikan Mishima , Emiko Sato","doi":"10.1016/j.jnutbio.2025.110039","DOIUrl":null,"url":null,"abstract":"<div><div>The prevalence of chronic kidney disease (CKD) continues to rise, highlighting the urgent need for effective therapeutic interventions to address its various complications including sarcopenia. Lactoferrin, a multifunctional iron-binding glycoprotein found in mammalian breast milk, exhibits various biological activities and holds potential for treating CKD and its complications. This study investigated the effects of lactoferrin on CKD progression, its complications, and underlying mechanisms. A mouse model of adenine-induced renal failure was used as a CKD model. Lactoferrin was administered during the same period as adenine administration to assess its preventative effect on the progression of CKD. In another experiment, lactoferrin was administered after the adenine administration period to examine its effect on already advanced CKD. Effects of lactoferrin on renal function, renal pathology, and muscle atrophy were evaluated. Additionally, mechanistic insights were explored through mRNA and protein expression profiling, gut microbiota characterization, and metabolomic analysis. Lactoferrin administration improved reduction of renal function, and mitigated renal atrophy, and tubulointerstitial damage, and ameliorated skeletal muscle atrophy in CKD mice. In the skeletal muscle, CKD induced aberrant activation of mTOR1, impaired autophagy, and disrupted branched-chain amino acid metabolism. This abnormal activation of the proteolysis pathways was ameliorated by lactoferrin. Furthermore, lactoferrin attenuated dysbiosis-induced production of microbiota-derived uremic toxins, thereby reducing the indoxyl sulfate accumulation in blood and muscle. These effects contributed to decreased renal damage and delayed sarcopenia progression. Collectively, these findings suggest that lactoferrin may serve as a promising preventive and therapeutic agent for CKD-associated sarcopenia via the gut-kidney-skeletal muscle axis.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"146 ","pages":"Article 110039"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactoferrin attenuates renal fibrosis and uremic sarcopenia in a mouse model of adenine-induced chronic kidney disease\",\"authors\":\"Yukina Iwamoto , Seiko Yamakoshi , Akiyo Sekimoto , Koji Hosomi , Takashi Toyama , Yoshiro Saito , Jun Kunisawa , Nobuyuki Takahashi , Eikan Mishima , Emiko Sato\",\"doi\":\"10.1016/j.jnutbio.2025.110039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The prevalence of chronic kidney disease (CKD) continues to rise, highlighting the urgent need for effective therapeutic interventions to address its various complications including sarcopenia. Lactoferrin, a multifunctional iron-binding glycoprotein found in mammalian breast milk, exhibits various biological activities and holds potential for treating CKD and its complications. This study investigated the effects of lactoferrin on CKD progression, its complications, and underlying mechanisms. A mouse model of adenine-induced renal failure was used as a CKD model. Lactoferrin was administered during the same period as adenine administration to assess its preventative effect on the progression of CKD. In another experiment, lactoferrin was administered after the adenine administration period to examine its effect on already advanced CKD. Effects of lactoferrin on renal function, renal pathology, and muscle atrophy were evaluated. Additionally, mechanistic insights were explored through mRNA and protein expression profiling, gut microbiota characterization, and metabolomic analysis. Lactoferrin administration improved reduction of renal function, and mitigated renal atrophy, and tubulointerstitial damage, and ameliorated skeletal muscle atrophy in CKD mice. In the skeletal muscle, CKD induced aberrant activation of mTOR1, impaired autophagy, and disrupted branched-chain amino acid metabolism. This abnormal activation of the proteolysis pathways was ameliorated by lactoferrin. Furthermore, lactoferrin attenuated dysbiosis-induced production of microbiota-derived uremic toxins, thereby reducing the indoxyl sulfate accumulation in blood and muscle. These effects contributed to decreased renal damage and delayed sarcopenia progression. Collectively, these findings suggest that lactoferrin may serve as a promising preventive and therapeutic agent for CKD-associated sarcopenia via the gut-kidney-skeletal muscle axis.</div></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"146 \",\"pages\":\"Article 110039\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286325002025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286325002025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lactoferrin attenuates renal fibrosis and uremic sarcopenia in a mouse model of adenine-induced chronic kidney disease
The prevalence of chronic kidney disease (CKD) continues to rise, highlighting the urgent need for effective therapeutic interventions to address its various complications including sarcopenia. Lactoferrin, a multifunctional iron-binding glycoprotein found in mammalian breast milk, exhibits various biological activities and holds potential for treating CKD and its complications. This study investigated the effects of lactoferrin on CKD progression, its complications, and underlying mechanisms. A mouse model of adenine-induced renal failure was used as a CKD model. Lactoferrin was administered during the same period as adenine administration to assess its preventative effect on the progression of CKD. In another experiment, lactoferrin was administered after the adenine administration period to examine its effect on already advanced CKD. Effects of lactoferrin on renal function, renal pathology, and muscle atrophy were evaluated. Additionally, mechanistic insights were explored through mRNA and protein expression profiling, gut microbiota characterization, and metabolomic analysis. Lactoferrin administration improved reduction of renal function, and mitigated renal atrophy, and tubulointerstitial damage, and ameliorated skeletal muscle atrophy in CKD mice. In the skeletal muscle, CKD induced aberrant activation of mTOR1, impaired autophagy, and disrupted branched-chain amino acid metabolism. This abnormal activation of the proteolysis pathways was ameliorated by lactoferrin. Furthermore, lactoferrin attenuated dysbiosis-induced production of microbiota-derived uremic toxins, thereby reducing the indoxyl sulfate accumulation in blood and muscle. These effects contributed to decreased renal damage and delayed sarcopenia progression. Collectively, these findings suggest that lactoferrin may serve as a promising preventive and therapeutic agent for CKD-associated sarcopenia via the gut-kidney-skeletal muscle axis.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.