神经酰胺通过调节ABA通路在广藿香对青枯病的应答中起重要作用。

IF 4.8 2区 生物学 Q1 PLANT SCIENCES
Jian Li, Dan-Xia Wu, He-Nan Bao, Ke-Yu Li, Ming-Yong Zhang, Yun-Hao Sun, Kuai-Fei Xia
{"title":"神经酰胺通过调节ABA通路在广藿香对青枯病的应答中起重要作用。","authors":"Jian Li, Dan-Xia Wu, He-Nan Bao, Ke-Yu Li, Ming-Yong Zhang, Yun-Hao Sun, Kuai-Fei Xia","doi":"10.1186/s12870-025-07009-4","DOIUrl":null,"url":null,"abstract":"<p><p>As a strategic resource for both medicine and essential oil, the healthy development of the Pogostemon cablin industry is crucial for the traditional medicine and fragrance sectors. Bacterial wilt represents one of the most significant threats to patchouli cultivation; however, the molecular mechanisms underlying P. cablin's response to bacterial wilt remain unexplored. Here, we conducted transcriptome and metabolome analyses, revealing an increase in the expression of genes associated with lipid pathways and a corresponding rise in the concentration of lipid metabolites in P. cablin following infection by the bacterial wilt pathogen SY1. Further lipidomics analysis demonstrated a significant upregulation of ceramide levels due to SY1 infection. Additionally, hormone analysis indicated that SY1 significantly induced an increase in abscisic acid (ABA) concentration, accompanied by the upregulation of genes involved in the ABA synthesis pathway and its downstream signaling pathways. Furthermore, we treated P. cablin seedlings with the ceramide synthase inhibitor FB1, which significantly reduced ceramide concentration in P. cablin. FB1 treatment also inhibited the expression of ABA-synthesizing genes, leading to a notable decrease in ABA concentration and downstream pathway genes. These data indicate that ceramides and ABA may participate in P. cablin's response to SY1.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"964"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297825/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ceramides play a significant role in the response of Pogostemon cablin to bacterial wilt by regulating the ABA pathway.\",\"authors\":\"Jian Li, Dan-Xia Wu, He-Nan Bao, Ke-Yu Li, Ming-Yong Zhang, Yun-Hao Sun, Kuai-Fei Xia\",\"doi\":\"10.1186/s12870-025-07009-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a strategic resource for both medicine and essential oil, the healthy development of the Pogostemon cablin industry is crucial for the traditional medicine and fragrance sectors. Bacterial wilt represents one of the most significant threats to patchouli cultivation; however, the molecular mechanisms underlying P. cablin's response to bacterial wilt remain unexplored. Here, we conducted transcriptome and metabolome analyses, revealing an increase in the expression of genes associated with lipid pathways and a corresponding rise in the concentration of lipid metabolites in P. cablin following infection by the bacterial wilt pathogen SY1. Further lipidomics analysis demonstrated a significant upregulation of ceramide levels due to SY1 infection. Additionally, hormone analysis indicated that SY1 significantly induced an increase in abscisic acid (ABA) concentration, accompanied by the upregulation of genes involved in the ABA synthesis pathway and its downstream signaling pathways. Furthermore, we treated P. cablin seedlings with the ceramide synthase inhibitor FB1, which significantly reduced ceramide concentration in P. cablin. FB1 treatment also inhibited the expression of ABA-synthesizing genes, leading to a notable decrease in ABA concentration and downstream pathway genes. These data indicate that ceramides and ABA may participate in P. cablin's response to SY1.</p>\",\"PeriodicalId\":9198,\"journal\":{\"name\":\"BMC Plant Biology\",\"volume\":\"25 1\",\"pages\":\"964\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297825/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12870-025-07009-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-07009-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

广藿香作为医药和精油的战略性资源,其产业的健康发展对传统医药和香精行业至关重要。细菌性枯萎病是广藿香种植最严重的威胁之一;然而,P. cablin对细菌性枯萎病反应的分子机制仍未被探索。在这里,我们进行了转录组和代谢组分析,揭示了在青枯病致病菌SY1感染后,与脂质途径相关的基因表达增加,脂质代谢物浓度相应上升。进一步的脂质组学分析表明,由于SY1感染,神经酰胺水平显著上调。此外,激素分析表明,SY1显著诱导ABA浓度升高,并伴有ABA合成途径及其下游信号通路相关基因的上调。此外,我们还用神经酰胺合成酶抑制剂FB1处理了柠条幼苗,显著降低了柠条神经酰胺浓度。FB1处理还抑制了ABA合成基因的表达,导致ABA浓度和下游通路基因显著降低。这些数据表明,神经酰胺和ABA可能参与了P. cablin对SY1的应答。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ceramides play a significant role in the response of Pogostemon cablin to bacterial wilt by regulating the ABA pathway.

As a strategic resource for both medicine and essential oil, the healthy development of the Pogostemon cablin industry is crucial for the traditional medicine and fragrance sectors. Bacterial wilt represents one of the most significant threats to patchouli cultivation; however, the molecular mechanisms underlying P. cablin's response to bacterial wilt remain unexplored. Here, we conducted transcriptome and metabolome analyses, revealing an increase in the expression of genes associated with lipid pathways and a corresponding rise in the concentration of lipid metabolites in P. cablin following infection by the bacterial wilt pathogen SY1. Further lipidomics analysis demonstrated a significant upregulation of ceramide levels due to SY1 infection. Additionally, hormone analysis indicated that SY1 significantly induced an increase in abscisic acid (ABA) concentration, accompanied by the upregulation of genes involved in the ABA synthesis pathway and its downstream signaling pathways. Furthermore, we treated P. cablin seedlings with the ceramide synthase inhibitor FB1, which significantly reduced ceramide concentration in P. cablin. FB1 treatment also inhibited the expression of ABA-synthesizing genes, leading to a notable decrease in ABA concentration and downstream pathway genes. These data indicate that ceramides and ABA may participate in P. cablin's response to SY1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信