粘弹性流体进入双曲波状Hele-Shaw单元的数值研究

IF 1.6 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Mohammad Reza Kord, Mahmood Norouzi, Mohammad Mohsen Shahmardan, Mohammad Hassan Kayhani, Mohammad Hossein Izadifard, Mohammad Kazem Sheykhian
{"title":"粘弹性流体进入双曲波状Hele-Shaw单元的数值研究","authors":"Mohammad Reza Kord,&nbsp;Mahmood Norouzi,&nbsp;Mohammad Mohsen Shahmardan,&nbsp;Mohammad Hassan Kayhani,&nbsp;Mohammad Hossein Izadifard,&nbsp;Mohammad Kazem Sheykhian","doi":"10.1002/ceat.70088","DOIUrl":null,"url":null,"abstract":"<p>This study numerically investigates the flow characteristics of a viscoelastic fluid in a two-dimensional Hele–Shaw cell with hyperbolic expansions and contractions. The fluid's rheology is described using the Phan–Thien–Tanner constitutive model, with the governing equations solved using the finite-volume method in OpenFOAM. Within the explored range of Weissenberg numbers (0.5 ≤ <i>Wi</i> ≤ 4), increasing the Weissenberg number leads to higher velocity magnitude, reduced principal stress difference, and more pronounced elastic effects, resulting in a stable, symmetric flow. No vortex formation or instabilities are observed along the geometry. Furthermore, the analysis comprehensively examines velocity fields, principal stress differences, stress ratios, flow types, and apparent viscosities.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"48 7","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of Viscoelastic Fluid Flow into a Hyperbolic Wavy Hele–Shaw Cell\",\"authors\":\"Mohammad Reza Kord,&nbsp;Mahmood Norouzi,&nbsp;Mohammad Mohsen Shahmardan,&nbsp;Mohammad Hassan Kayhani,&nbsp;Mohammad Hossein Izadifard,&nbsp;Mohammad Kazem Sheykhian\",\"doi\":\"10.1002/ceat.70088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study numerically investigates the flow characteristics of a viscoelastic fluid in a two-dimensional Hele–Shaw cell with hyperbolic expansions and contractions. The fluid's rheology is described using the Phan–Thien–Tanner constitutive model, with the governing equations solved using the finite-volume method in OpenFOAM. Within the explored range of Weissenberg numbers (0.5 ≤ <i>Wi</i> ≤ 4), increasing the Weissenberg number leads to higher velocity magnitude, reduced principal stress difference, and more pronounced elastic effects, resulting in a stable, symmetric flow. No vortex formation or instabilities are observed along the geometry. Furthermore, the analysis comprehensively examines velocity fields, principal stress differences, stress ratios, flow types, and apparent viscosities.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":\"48 7\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.70088\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.70088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文用数值方法研究了粘弹性流体在具有双曲膨胀和收缩的二维Hele-Shaw单元中的流动特性。采用Phan-Thien-Tanner本构模型描述流体的流变特性,并使用OpenFOAM中的有限体积方法求解控制方程。在探索的Weissenberg数范围内(0.5≤Wi≤4),增大Weissenberg数,速度量级增大,主应力差减小,弹性效应更加明显,流动稳定、对称。没有涡旋形成或不稳定沿几何观察。此外,分析还全面检查了速度场、主应力差、应力比、流动类型和表观粘度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical Investigation of Viscoelastic Fluid Flow into a Hyperbolic Wavy Hele–Shaw Cell

Numerical Investigation of Viscoelastic Fluid Flow into a Hyperbolic Wavy Hele–Shaw Cell

This study numerically investigates the flow characteristics of a viscoelastic fluid in a two-dimensional Hele–Shaw cell with hyperbolic expansions and contractions. The fluid's rheology is described using the Phan–Thien–Tanner constitutive model, with the governing equations solved using the finite-volume method in OpenFOAM. Within the explored range of Weissenberg numbers (0.5 ≤ Wi ≤ 4), increasing the Weissenberg number leads to higher velocity magnitude, reduced principal stress difference, and more pronounced elastic effects, resulting in a stable, symmetric flow. No vortex formation or instabilities are observed along the geometry. Furthermore, the analysis comprehensively examines velocity fields, principal stress differences, stress ratios, flow types, and apparent viscosities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信