P. C. Hinton, D. A. Brain, N. R. Schnepf, R. Jarvinen, J. Cessna, F. Bagenal
{"title":"非磁化地球上电离层发射的大气质量通量函数","authors":"P. C. Hinton, D. A. Brain, N. R. Schnepf, R. Jarvinen, J. Cessna, F. Bagenal","doi":"10.1029/2024JA033663","DOIUrl":null,"url":null,"abstract":"<p>We explore ion escape from, and solar ion deposition to, an unmagnetized Earth-like planet. We use RHybrid, an ion-kinetic electron-fluid code to simulate the global plasma interaction of unmagnetized Earth with the solar wind. We vary the global ionospheric emission rate, and quantify the resultant planetary ion escape rates (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>O</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${O}^{+}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${H}^{+}$</annotation>\n </semantics></math>) and the solar wind deposition rate (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation> ${H}^{+}$</annotation>\n </semantics></math>). We use these results to compute the net mass flux to the atmosphere and find that the solar ion deposition rate could be comparable to planetary ion escape rates. For the emission rates simulated, our results show that under typical solar wind conditions (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mrow>\n <mi>s</mi>\n <mi>w</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>400</mn>\n <mspace></mspace>\n <mi>k</mi>\n <mi>m</mi>\n <mspace></mspace>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${v}_{sw}=400\\ \\mathrm{k}\\mathrm{m}\\ {\\mathrm{s}}^{-1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mrow>\n <mi>s</mi>\n <mi>w</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>5</mn>\n <mspace></mspace>\n <mi>c</mi>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${n}_{sw}=5\\ \\mathrm{c}{\\mathrm{m}}^{-3}$</annotation>\n </semantics></math>), the mass of the atmosphere would decrease by less than 3% over a billion years, indicating that Earth's intrinsic magnetic field may be unnecessary for retention of its atmosphere. Lastly, we present a hypothesis suggesting that ionospheric emission may evolve through time toward a critical emission rate that occurs at a net mass flux of zero.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atmospheric Mass Flux as a Function of Ionospheric Emission on Unmagnetized Earth\",\"authors\":\"P. C. Hinton, D. A. Brain, N. R. Schnepf, R. Jarvinen, J. Cessna, F. Bagenal\",\"doi\":\"10.1029/2024JA033663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We explore ion escape from, and solar ion deposition to, an unmagnetized Earth-like planet. We use RHybrid, an ion-kinetic electron-fluid code to simulate the global plasma interaction of unmagnetized Earth with the solar wind. We vary the global ionospheric emission rate, and quantify the resultant planetary ion escape rates (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>O</mi>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation> ${O}^{+}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation> ${H}^{+}$</annotation>\\n </semantics></math>) and the solar wind deposition rate (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation> ${H}^{+}$</annotation>\\n </semantics></math>). We use these results to compute the net mass flux to the atmosphere and find that the solar ion deposition rate could be comparable to planetary ion escape rates. For the emission rates simulated, our results show that under typical solar wind conditions (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>v</mi>\\n <mrow>\\n <mi>s</mi>\\n <mi>w</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>400</mn>\\n <mspace></mspace>\\n <mi>k</mi>\\n <mi>m</mi>\\n <mspace></mspace>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${v}_{sw}=400\\\\ \\\\mathrm{k}\\\\mathrm{m}\\\\ {\\\\mathrm{s}}^{-1}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mrow>\\n <mi>s</mi>\\n <mi>w</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>5</mn>\\n <mspace></mspace>\\n <mi>c</mi>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${n}_{sw}=5\\\\ \\\\mathrm{c}{\\\\mathrm{m}}^{-3}$</annotation>\\n </semantics></math>), the mass of the atmosphere would decrease by less than 3% over a billion years, indicating that Earth's intrinsic magnetic field may be unnecessary for retention of its atmosphere. Lastly, we present a hypothesis suggesting that ionospheric emission may evolve through time toward a critical emission rate that occurs at a net mass flux of zero.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 8\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JA033663\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JA033663","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们将探索一颗非磁化类地行星的离子逃逸和太阳离子沉积。我们使用RHybrid,一个离子动力学电子流体代码来模拟非磁化地球与太阳风的全球等离子体相互作用。我们改变全球电离层排放率,量化得到的行星离子逃逸率(O + ${O}^{+}$和H + ${H}^{+}$)和太阳风沉积率(H+ ${h}^{+}$)。我们利用这些结果来计算大气的净质量通量,并发现太阳离子沉积速率可以与行星离子逃逸速率相媲美。对于模拟的排放率,结果表明,在典型太阳风条件下(v s w = 400 k m s−1)${v}_{sw}=400\ \ mathm {k}\ mathm {m}\ {\ mathm {s}}^{-1}$,N sw =5 c m -3 ${N}_{sw}=5\ \mathrm{c}{\mathrm{m}}^{-3}$)在10亿年内,大气层的质量将减少不到3%,这表明地球的固有磁场可能对大气层的保留是不必要的。最后,我们提出了一个假设,表明电离层发射可能随着时间的推移而向净质量通量为零的临界发射率发展。
Atmospheric Mass Flux as a Function of Ionospheric Emission on Unmagnetized Earth
We explore ion escape from, and solar ion deposition to, an unmagnetized Earth-like planet. We use RHybrid, an ion-kinetic electron-fluid code to simulate the global plasma interaction of unmagnetized Earth with the solar wind. We vary the global ionospheric emission rate, and quantify the resultant planetary ion escape rates ( and ) and the solar wind deposition rate (). We use these results to compute the net mass flux to the atmosphere and find that the solar ion deposition rate could be comparable to planetary ion escape rates. For the emission rates simulated, our results show that under typical solar wind conditions (, ), the mass of the atmosphere would decrease by less than 3% over a billion years, indicating that Earth's intrinsic magnetic field may be unnecessary for retention of its atmosphere. Lastly, we present a hypothesis suggesting that ionospheric emission may evolve through time toward a critical emission rate that occurs at a net mass flux of zero.