Ludovic Pascal, Félix Cloutier-Artiwat, Arturo Zanon, Douglas W. R. Wallace, Gwénaëlle Chaillou
{"title":"沿海水域和沉积物中N2和N2O生成的新脱氧阈值","authors":"Ludovic Pascal, Félix Cloutier-Artiwat, Arturo Zanon, Douglas W. R. Wallace, Gwénaëlle Chaillou","doi":"10.1029/2024GB008218","DOIUrl":null,"url":null,"abstract":"<p>Bioavailable nitrogen governs ocean productivity and carbon fixation by regulating phytoplankton growth and community composition. Nitrogen input primarily results from <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math> fixation, while denitrification and anammox remove bioavailable nitrogen in oxygen-depleted conditions. Traditionally considered limited to highly suboxic (i.e., <5 μM) waters, recent studies suggest that fixed-nitrogen removal processes may extend beyond, elevating global nitrogen loss estimates. This study directly quantifies fixed-nitrogen loss across oxygen gradients (from 140 to 32 μM) along the Estuary and Gulf of St. Lawrence using N cycle tracers (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mo>/</mo>\n <mtext>Ar</mtext>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}/\\text{Ar}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>N</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{N}}^{\\ast }$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}\\mathrm{O}$</annotation>\n </semantics></math>). Notably, we observe significant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math> production when ambient <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{2}$</annotation>\n </semantics></math> concentrations fall below a threshold value of 58.9 ± 1.1 μM, including potential water column fixed-nitrogen removal processes above suboxia. We hypothesis that ambient deoxygenation eases the formation of suboxic microareas in suspended organic matter. Benthic <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math> production remains unaffected under intensifying water column deoxygenation from 50 down to 32 μM, but the contribution of <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <msubsup>\n <mi>O</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation> $\\mathrm{N}{\\mathrm{O}}_{3}^{-}$</annotation>\n </semantics></math> produced through nitrification in the sediment to denitrification diminishes as deoxygenation intensifies. Combined, water column and benthic fixed-nitrogen removal processes drive <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>N</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{N}}^{\\ast }$</annotation>\n </semantics></math> anomalies and strong <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <msubsup>\n <mi>O</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation> $\\mathrm{N}{\\mathrm{O}}_{3}^{-}$</annotation>\n </semantics></math> deficiency in bottom waters. Additionally, the observed <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{2}$</annotation>\n </semantics></math> threshold also triggers <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}\\mathrm{O}$</annotation>\n </semantics></math> production. Overall, our study highlights the profound impact of coastal ocean deoxygenation on nitrogen cycling, suggesting unexpected shifts even at ambient oxygen concentrations traditionally considered well above suboxic conditions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008218","citationCount":"0","resultStr":"{\"title\":\"New Deoxygenation Threshold for N2 and N2O Production in Coastal Waters and Sediments\",\"authors\":\"Ludovic Pascal, Félix Cloutier-Artiwat, Arturo Zanon, Douglas W. R. Wallace, Gwénaëlle Chaillou\",\"doi\":\"10.1029/2024GB008218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioavailable nitrogen governs ocean productivity and carbon fixation by regulating phytoplankton growth and community composition. Nitrogen input primarily results from <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math> fixation, while denitrification and anammox remove bioavailable nitrogen in oxygen-depleted conditions. Traditionally considered limited to highly suboxic (i.e., <5 μM) waters, recent studies suggest that fixed-nitrogen removal processes may extend beyond, elevating global nitrogen loss estimates. This study directly quantifies fixed-nitrogen loss across oxygen gradients (from 140 to 32 μM) along the Estuary and Gulf of St. Lawrence using N cycle tracers (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>/</mo>\\n <mtext>Ar</mtext>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}/\\\\text{Ar}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>N</mi>\\n <mo>∗</mo>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}^{\\\\ast }$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>O</mi>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}\\\\mathrm{O}$</annotation>\\n </semantics></math>). Notably, we observe significant <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math> production when ambient <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{O}}_{2}$</annotation>\\n </semantics></math> concentrations fall below a threshold value of 58.9 ± 1.1 μM, including potential water column fixed-nitrogen removal processes above suboxia. We hypothesis that ambient deoxygenation eases the formation of suboxic microareas in suspended organic matter. Benthic <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math> production remains unaffected under intensifying water column deoxygenation from 50 down to 32 μM, but the contribution of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <msubsup>\\n <mi>O</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation> $\\\\mathrm{N}{\\\\mathrm{O}}_{3}^{-}$</annotation>\\n </semantics></math> produced through nitrification in the sediment to denitrification diminishes as deoxygenation intensifies. Combined, water column and benthic fixed-nitrogen removal processes drive <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>N</mi>\\n <mo>∗</mo>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}^{\\\\ast }$</annotation>\\n </semantics></math> anomalies and strong <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <msubsup>\\n <mi>O</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation> $\\\\mathrm{N}{\\\\mathrm{O}}_{3}^{-}$</annotation>\\n </semantics></math> deficiency in bottom waters. Additionally, the observed <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{O}}_{2}$</annotation>\\n </semantics></math> threshold also triggers <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>O</mi>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}\\\\mathrm{O}$</annotation>\\n </semantics></math> production. Overall, our study highlights the profound impact of coastal ocean deoxygenation on nitrogen cycling, suggesting unexpected shifts even at ambient oxygen concentrations traditionally considered well above suboxic conditions.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008218\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008218\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008218","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
New Deoxygenation Threshold for N2 and N2O Production in Coastal Waters and Sediments
Bioavailable nitrogen governs ocean productivity and carbon fixation by regulating phytoplankton growth and community composition. Nitrogen input primarily results from fixation, while denitrification and anammox remove bioavailable nitrogen in oxygen-depleted conditions. Traditionally considered limited to highly suboxic (i.e., <5 μM) waters, recent studies suggest that fixed-nitrogen removal processes may extend beyond, elevating global nitrogen loss estimates. This study directly quantifies fixed-nitrogen loss across oxygen gradients (from 140 to 32 μM) along the Estuary and Gulf of St. Lawrence using N cycle tracers (, , and ). Notably, we observe significant production when ambient concentrations fall below a threshold value of 58.9 ± 1.1 μM, including potential water column fixed-nitrogen removal processes above suboxia. We hypothesis that ambient deoxygenation eases the formation of suboxic microareas in suspended organic matter. Benthic production remains unaffected under intensifying water column deoxygenation from 50 down to 32 μM, but the contribution of produced through nitrification in the sediment to denitrification diminishes as deoxygenation intensifies. Combined, water column and benthic fixed-nitrogen removal processes drive anomalies and strong deficiency in bottom waters. Additionally, the observed threshold also triggers production. Overall, our study highlights the profound impact of coastal ocean deoxygenation on nitrogen cycling, suggesting unexpected shifts even at ambient oxygen concentrations traditionally considered well above suboxic conditions.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.