沿海水域和沉积物中N2和N2O生成的新脱氧阈值

IF 5.5 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Ludovic Pascal, Félix Cloutier-Artiwat, Arturo Zanon, Douglas W. R. Wallace, Gwénaëlle Chaillou
{"title":"沿海水域和沉积物中N2和N2O生成的新脱氧阈值","authors":"Ludovic Pascal,&nbsp;Félix Cloutier-Artiwat,&nbsp;Arturo Zanon,&nbsp;Douglas W. R. Wallace,&nbsp;Gwénaëlle Chaillou","doi":"10.1029/2024GB008218","DOIUrl":null,"url":null,"abstract":"<p>Bioavailable nitrogen governs ocean productivity and carbon fixation by regulating phytoplankton growth and community composition. Nitrogen input primarily results from <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math> fixation, while denitrification and anammox remove bioavailable nitrogen in oxygen-depleted conditions. Traditionally considered limited to highly suboxic (i.e., &lt;5 μM) waters, recent studies suggest that fixed-nitrogen removal processes may extend beyond, elevating global nitrogen loss estimates. This study directly quantifies fixed-nitrogen loss across oxygen gradients (from 140 to 32 μM) along the Estuary and Gulf of St. Lawrence using N cycle tracers (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mo>/</mo>\n <mtext>Ar</mtext>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}/\\text{Ar}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>N</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{N}}^{\\ast }$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}\\mathrm{O}$</annotation>\n </semantics></math>). Notably, we observe significant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math> production when ambient <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{2}$</annotation>\n </semantics></math> concentrations fall below a threshold value of 58.9 ± 1.1 μM, including potential water column fixed-nitrogen removal processes above suboxia. We hypothesis that ambient deoxygenation eases the formation of suboxic microareas in suspended organic matter. Benthic <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}$</annotation>\n </semantics></math> production remains unaffected under intensifying water column deoxygenation from 50 down to 32 μM, but the contribution of <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <msubsup>\n <mi>O</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation> $\\mathrm{N}{\\mathrm{O}}_{3}^{-}$</annotation>\n </semantics></math> produced through nitrification in the sediment to denitrification diminishes as deoxygenation intensifies. Combined, water column and benthic fixed-nitrogen removal processes drive <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>N</mi>\n <mo>∗</mo>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{N}}^{\\ast }$</annotation>\n </semantics></math> anomalies and strong <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <msubsup>\n <mi>O</mi>\n <mn>3</mn>\n <mo>−</mo>\n </msubsup>\n </mrow>\n <annotation> $\\mathrm{N}{\\mathrm{O}}_{3}^{-}$</annotation>\n </semantics></math> deficiency in bottom waters. Additionally, the observed <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{2}$</annotation>\n </semantics></math> threshold also triggers <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mi>O</mi>\n </mrow>\n <annotation> ${\\mathrm{N}}_{2}\\mathrm{O}$</annotation>\n </semantics></math> production. Overall, our study highlights the profound impact of coastal ocean deoxygenation on nitrogen cycling, suggesting unexpected shifts even at ambient oxygen concentrations traditionally considered well above suboxic conditions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008218","citationCount":"0","resultStr":"{\"title\":\"New Deoxygenation Threshold for N2 and N2O Production in Coastal Waters and Sediments\",\"authors\":\"Ludovic Pascal,&nbsp;Félix Cloutier-Artiwat,&nbsp;Arturo Zanon,&nbsp;Douglas W. R. Wallace,&nbsp;Gwénaëlle Chaillou\",\"doi\":\"10.1029/2024GB008218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioavailable nitrogen governs ocean productivity and carbon fixation by regulating phytoplankton growth and community composition. Nitrogen input primarily results from <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math> fixation, while denitrification and anammox remove bioavailable nitrogen in oxygen-depleted conditions. Traditionally considered limited to highly suboxic (i.e., &lt;5 μM) waters, recent studies suggest that fixed-nitrogen removal processes may extend beyond, elevating global nitrogen loss estimates. This study directly quantifies fixed-nitrogen loss across oxygen gradients (from 140 to 32 μM) along the Estuary and Gulf of St. Lawrence using N cycle tracers (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>/</mo>\\n <mtext>Ar</mtext>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}/\\\\text{Ar}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>N</mi>\\n <mo>∗</mo>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}^{\\\\ast }$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>O</mi>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}\\\\mathrm{O}$</annotation>\\n </semantics></math>). Notably, we observe significant <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math> production when ambient <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{O}}_{2}$</annotation>\\n </semantics></math> concentrations fall below a threshold value of 58.9 ± 1.1 μM, including potential water column fixed-nitrogen removal processes above suboxia. We hypothesis that ambient deoxygenation eases the formation of suboxic microareas in suspended organic matter. Benthic <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math> production remains unaffected under intensifying water column deoxygenation from 50 down to 32 μM, but the contribution of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <msubsup>\\n <mi>O</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation> $\\\\mathrm{N}{\\\\mathrm{O}}_{3}^{-}$</annotation>\\n </semantics></math> produced through nitrification in the sediment to denitrification diminishes as deoxygenation intensifies. Combined, water column and benthic fixed-nitrogen removal processes drive <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>N</mi>\\n <mo>∗</mo>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}^{\\\\ast }$</annotation>\\n </semantics></math> anomalies and strong <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <msubsup>\\n <mi>O</mi>\\n <mn>3</mn>\\n <mo>−</mo>\\n </msubsup>\\n </mrow>\\n <annotation> $\\\\mathrm{N}{\\\\mathrm{O}}_{3}^{-}$</annotation>\\n </semantics></math> deficiency in bottom waters. Additionally, the observed <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>O</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{O}}_{2}$</annotation>\\n </semantics></math> threshold also triggers <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mi>O</mi>\\n </mrow>\\n <annotation> ${\\\\mathrm{N}}_{2}\\\\mathrm{O}$</annotation>\\n </semantics></math> production. Overall, our study highlights the profound impact of coastal ocean deoxygenation on nitrogen cycling, suggesting unexpected shifts even at ambient oxygen concentrations traditionally considered well above suboxic conditions.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008218\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008218\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008218","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物可利用氮通过调节浮游植物生长和群落组成来控制海洋生产力和碳固定。氮输入主要来自n2 ${\ mathm {N}}_{2}$固定,而反硝化和厌氧氨氧化在缺氧条件下去除生物有效氮。传统上认为,固定氮去除过程仅限于高亚氧(即<;5 μM)水域,最近的研究表明,固定氮去除过程可能会扩展到更高的范围,从而提高全球氮损失估计。本研究利用N循环示踪剂(n2 / Ar ${\ mathm {N}}_{2}/\text{Ar}$,N * ${\mathrm{N}}^{\ast}$,以及N * ${\mathrm{N}}_{2}\mathrm{O}$)。值得注意的是,当环境o2 {\ mathm {O}}_{2}$浓度低于58.9±1.1 μM的阈值时,我们观察到显著的n2 ${\ mathm {N}}_{2}$产生;包括潜在的水柱固定脱氮工艺以上缺氧。我们假设环境脱氧减轻了悬浮有机物中亚氧微区的形成。底栖生物N 2 ${\ mathm {N}}_{2}$产量在水柱脱氧强度从50 μM降至32 μM时不受影响;而沉积物中硝化作用产生的N O 3−$\ mathm {N}{\ mathm {O}}_{3}^{-}$对反硝化作用的贡献随着脱氧作用的增强而减小。相结合,水柱和底栖生物固定氮去除过程驱动N∗${\ mathm {N}}^{\ast}$异常和强N O 3−$\mathrm{N}{\mathrm{O}}_{3}^{-}$底水不足。此外,观察到的o2 ${\mathrm{O}}_{2}$阈值也会触发n2 ${\mathrm{N}}_{2}\mathrm{O}$的生成。总的来说,我们的研究强调了沿海海洋脱氧对氮循环的深远影响,表明即使在传统上被认为远高于缺氧条件的环境氧浓度下也会发生意想不到的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

New Deoxygenation Threshold for N2 and N2O Production in Coastal Waters and Sediments

New Deoxygenation Threshold for N2 and N2O Production in Coastal Waters and Sediments

New Deoxygenation Threshold for N2 and N2O Production in Coastal Waters and Sediments

New Deoxygenation Threshold for N2 and N2O Production in Coastal Waters and Sediments

Bioavailable nitrogen governs ocean productivity and carbon fixation by regulating phytoplankton growth and community composition. Nitrogen input primarily results from N 2 ${\mathrm{N}}_{2}$ fixation, while denitrification and anammox remove bioavailable nitrogen in oxygen-depleted conditions. Traditionally considered limited to highly suboxic (i.e., <5 μM) waters, recent studies suggest that fixed-nitrogen removal processes may extend beyond, elevating global nitrogen loss estimates. This study directly quantifies fixed-nitrogen loss across oxygen gradients (from 140 to 32 μM) along the Estuary and Gulf of St. Lawrence using N cycle tracers ( N 2 / Ar ${\mathrm{N}}_{2}/\text{Ar}$ , N ${\mathrm{N}}^{\ast }$ , and N 2 O ${\mathrm{N}}_{2}\mathrm{O}$ ). Notably, we observe significant N 2 ${\mathrm{N}}_{2}$ production when ambient O 2 ${\mathrm{O}}_{2}$ concentrations fall below a threshold value of 58.9 ± 1.1 μM, including potential water column fixed-nitrogen removal processes above suboxia. We hypothesis that ambient deoxygenation eases the formation of suboxic microareas in suspended organic matter. Benthic N 2 ${\mathrm{N}}_{2}$ production remains unaffected under intensifying water column deoxygenation from 50 down to 32 μM, but the contribution of N O 3 $\mathrm{N}{\mathrm{O}}_{3}^{-}$ produced through nitrification in the sediment to denitrification diminishes as deoxygenation intensifies. Combined, water column and benthic fixed-nitrogen removal processes drive N ${\mathrm{N}}^{\ast }$ anomalies and strong N O 3 $\mathrm{N}{\mathrm{O}}_{3}^{-}$ deficiency in bottom waters. Additionally, the observed O 2 ${\mathrm{O}}_{2}$ threshold also triggers N 2 O ${\mathrm{N}}_{2}\mathrm{O}$ production. Overall, our study highlights the profound impact of coastal ocean deoxygenation on nitrogen cycling, suggesting unexpected shifts even at ambient oxygen concentrations traditionally considered well above suboxic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信