Zhenglei Han, Long Lin, Xiaoqing Yang and Pengtao Wang
{"title":"Mn/ fe掺杂ZrSe2对SF6分解气体吸附的理论研究","authors":"Zhenglei Han, Long Lin, Xiaoqing Yang and Pengtao Wang","doi":"10.1039/D5NJ02310F","DOIUrl":null,"url":null,"abstract":"<p >In this study, we investigate the adsorption characteristics of intrinsic ZrSe<small><sub>2</sub></small> and Mn/Fe-doped ZrSe<small><sub>2</sub></small> for SF<small><sub>6</sub></small> decomposition gases (H<small><sub>2</sub></small>S, SO<small><sub>2</sub></small>, SO<small><sub>2</sub></small>F<small><sub>2</sub></small>, SOF<small><sub>2</sub></small>) using first-principles calculations. Pristine ZrSe<small><sub>2</sub></small> shows limited adsorption capacity for these gases. However, Mn and Fe doping significantly enhances the adsorption performance. Mn-doped ZrSe<small><sub>2</sub></small> exhibits remarkable adsorption advantages, with adsorption energy increasing significantly for H<small><sub>2</sub></small>S and SO<small><sub>2</sub></small>, and a near-zero bandgap for SO<small><sub>2</sub></small>, indicating optimal conductivity and the highest sensitivity. Fe-doped ZrSe<small><sub>2</sub></small> shows a selective advantage for SO<small><sub>2</sub></small> and SOF<small><sub>2</sub></small> adsorption. Mn and Fe doping can optimize ZrSe<small><sub>2</sub></small>'s electronic structure, improving its adsorption and detection capabilities for SF<small><sub>6</sub></small> decomposition gases, and provide a theoretical foundation for designing high-performance gas sensors based on ZrSe<small><sub>2</sub></small>.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 30","pages":" 12971-12979"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mn/Fe-doped ZrSe2 for SF6 decomposition gas adsorption: a theoretical study\",\"authors\":\"Zhenglei Han, Long Lin, Xiaoqing Yang and Pengtao Wang\",\"doi\":\"10.1039/D5NJ02310F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, we investigate the adsorption characteristics of intrinsic ZrSe<small><sub>2</sub></small> and Mn/Fe-doped ZrSe<small><sub>2</sub></small> for SF<small><sub>6</sub></small> decomposition gases (H<small><sub>2</sub></small>S, SO<small><sub>2</sub></small>, SO<small><sub>2</sub></small>F<small><sub>2</sub></small>, SOF<small><sub>2</sub></small>) using first-principles calculations. Pristine ZrSe<small><sub>2</sub></small> shows limited adsorption capacity for these gases. However, Mn and Fe doping significantly enhances the adsorption performance. Mn-doped ZrSe<small><sub>2</sub></small> exhibits remarkable adsorption advantages, with adsorption energy increasing significantly for H<small><sub>2</sub></small>S and SO<small><sub>2</sub></small>, and a near-zero bandgap for SO<small><sub>2</sub></small>, indicating optimal conductivity and the highest sensitivity. Fe-doped ZrSe<small><sub>2</sub></small> shows a selective advantage for SO<small><sub>2</sub></small> and SOF<small><sub>2</sub></small> adsorption. Mn and Fe doping can optimize ZrSe<small><sub>2</sub></small>'s electronic structure, improving its adsorption and detection capabilities for SF<small><sub>6</sub></small> decomposition gases, and provide a theoretical foundation for designing high-performance gas sensors based on ZrSe<small><sub>2</sub></small>.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 30\",\"pages\":\" 12971-12979\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02310f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj02310f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mn/Fe-doped ZrSe2 for SF6 decomposition gas adsorption: a theoretical study
In this study, we investigate the adsorption characteristics of intrinsic ZrSe2 and Mn/Fe-doped ZrSe2 for SF6 decomposition gases (H2S, SO2, SO2F2, SOF2) using first-principles calculations. Pristine ZrSe2 shows limited adsorption capacity for these gases. However, Mn and Fe doping significantly enhances the adsorption performance. Mn-doped ZrSe2 exhibits remarkable adsorption advantages, with adsorption energy increasing significantly for H2S and SO2, and a near-zero bandgap for SO2, indicating optimal conductivity and the highest sensitivity. Fe-doped ZrSe2 shows a selective advantage for SO2 and SOF2 adsorption. Mn and Fe doping can optimize ZrSe2's electronic structure, improving its adsorption and detection capabilities for SF6 decomposition gases, and provide a theoretical foundation for designing high-performance gas sensors based on ZrSe2.