Li-Mg铁氧体的振动、光学和介电性能的实验研究,用于潜在的高频和光电应用

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-07-29 DOI:10.1039/D5RA03292J
Ibtihel Soudani, Najoua Weslati, Sami Znaidia, Abderrazek Oueslati, Abdelhedi Aydi and Kamel Khirouni
{"title":"Li-Mg铁氧体的振动、光学和介电性能的实验研究,用于潜在的高频和光电应用","authors":"Ibtihel Soudani, Najoua Weslati, Sami Znaidia, Abderrazek Oueslati, Abdelhedi Aydi and Kamel Khirouni","doi":"10.1039/D5RA03292J","DOIUrl":null,"url":null,"abstract":"<p >Spinel lithium ferrites hold considerable significance in technological applications. Numerous investigations are conducted to explore the mechanisms underlying their properties. This work aims to detail the vibrational, optical, dielectric, thermodynamic, and magnetic properties of the LiMg<small><sub>0.5</sub></small>Fe<small><sub>2</sub></small>O<small><sub>4</sub></small> compound. Infrared and Raman spectroscopy further indicate the formation of the spinel phase in the samples. The optical study reveals a direct band gap with semiconducting characteristics, approximately 2.15 eV, with a low Urbach energy, indicating minimal disorder. Furthermore, precise calculations of thermodynamic parameters, including entropy change (Δ<em>S</em>), enthalpy change (Δ<em>H</em>), and free energy of activation (Δ<em>F</em>), provide additional insights into the properties of the compound. High dielectric permittivity values, reaching around 10<small><sup>5</sup></small>, are observed and attributed to the Maxwell–Wagner interfacial polarization mechanism. The remanent magnetization (<em>M</em><small><sub>r</sub></small> = 0.97 emu g<small><sup>−1</sup></small>) and coercive field (<em>H</em><small><sub>C</sub></small> = 4.55 Oe) extracted from the M–H loop are both notably low, clearly indicating the superparamagnetic nature of the sample. Our results show that LiMg<small><sub>0.5</sub></small>Fe<small><sub>2</sub></small>O<small><sub>4</sub></small> ferrite is a promising candidate for applications in multifunctional devices.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 33","pages":" 26873-26885"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03292j?page=search","citationCount":"0","resultStr":"{\"title\":\"An experimental investigation of vibrational, optical, and dielectric properties of Li–Mg ferrite for potential high-frequency and optoelectronic applications\",\"authors\":\"Ibtihel Soudani, Najoua Weslati, Sami Znaidia, Abderrazek Oueslati, Abdelhedi Aydi and Kamel Khirouni\",\"doi\":\"10.1039/D5RA03292J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spinel lithium ferrites hold considerable significance in technological applications. Numerous investigations are conducted to explore the mechanisms underlying their properties. This work aims to detail the vibrational, optical, dielectric, thermodynamic, and magnetic properties of the LiMg<small><sub>0.5</sub></small>Fe<small><sub>2</sub></small>O<small><sub>4</sub></small> compound. Infrared and Raman spectroscopy further indicate the formation of the spinel phase in the samples. The optical study reveals a direct band gap with semiconducting characteristics, approximately 2.15 eV, with a low Urbach energy, indicating minimal disorder. Furthermore, precise calculations of thermodynamic parameters, including entropy change (Δ<em>S</em>), enthalpy change (Δ<em>H</em>), and free energy of activation (Δ<em>F</em>), provide additional insights into the properties of the compound. High dielectric permittivity values, reaching around 10<small><sup>5</sup></small>, are observed and attributed to the Maxwell–Wagner interfacial polarization mechanism. The remanent magnetization (<em>M</em><small><sub>r</sub></small> = 0.97 emu g<small><sup>−1</sup></small>) and coercive field (<em>H</em><small><sub>C</sub></small> = 4.55 Oe) extracted from the M–H loop are both notably low, clearly indicating the superparamagnetic nature of the sample. Our results show that LiMg<small><sub>0.5</sub></small>Fe<small><sub>2</sub></small>O<small><sub>4</sub></small> ferrite is a promising candidate for applications in multifunctional devices.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 33\",\"pages\":\" 26873-26885\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra03292j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03292j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra03292j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尖晶石锂铁氧体具有重要的技术应用意义。进行了大量的调查以探索其性质背后的机制。这项工作旨在详细描述LiMg0.5Fe2O4化合物的振动、光学、介电、热力学和磁性能。红外光谱和拉曼光谱进一步表明样品中尖晶石相的形成。光学研究揭示了具有半导体特性的直接带隙,约为2.15 eV,具有低厄巴赫能量,表明最小的无序。此外,对热力学参数的精确计算,包括熵变(ΔS)、焓变(ΔH)和自由活化能(ΔF),为化合物的性质提供了更多的见解。观察到高介电常数值,达到105左右,并归因于麦克斯韦-瓦格纳界面极化机制。从M-H环中提取的剩余磁化强度(Mr = 0.97 emu g−1)和矫顽力场(HC = 4.55 Oe)都很低,表明样品具有超顺磁性。结果表明,LiMg0.5Fe2O4铁氧体在多功能器件中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An experimental investigation of vibrational, optical, and dielectric properties of Li–Mg ferrite for potential high-frequency and optoelectronic applications

An experimental investigation of vibrational, optical, and dielectric properties of Li–Mg ferrite for potential high-frequency and optoelectronic applications

Spinel lithium ferrites hold considerable significance in technological applications. Numerous investigations are conducted to explore the mechanisms underlying their properties. This work aims to detail the vibrational, optical, dielectric, thermodynamic, and magnetic properties of the LiMg0.5Fe2O4 compound. Infrared and Raman spectroscopy further indicate the formation of the spinel phase in the samples. The optical study reveals a direct band gap with semiconducting characteristics, approximately 2.15 eV, with a low Urbach energy, indicating minimal disorder. Furthermore, precise calculations of thermodynamic parameters, including entropy change (ΔS), enthalpy change (ΔH), and free energy of activation (ΔF), provide additional insights into the properties of the compound. High dielectric permittivity values, reaching around 105, are observed and attributed to the Maxwell–Wagner interfacial polarization mechanism. The remanent magnetization (Mr = 0.97 emu g−1) and coercive field (HC = 4.55 Oe) extracted from the M–H loop are both notably low, clearly indicating the superparamagnetic nature of the sample. Our results show that LiMg0.5Fe2O4 ferrite is a promising candidate for applications in multifunctional devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信