公共建筑纳入电力系统运行区间需求响应潜力评价与风险调度

IF 6.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu Yao;Chengjin Ye;Yuming Zhao;Yi Ding
{"title":"公共建筑纳入电力系统运行区间需求响应潜力评价与风险调度","authors":"Yu Yao;Chengjin Ye;Yuming Zhao;Yi Ding","doi":"10.35833/MPCE.2024.000919","DOIUrl":null,"url":null,"abstract":"Public buildings present substantial demand response (DR) potential, which can participate in the power system operation. However, most public buildings exhibit a high degree of uncertainties due to incomplete information, varying thermal parameters, and stochastic user behaviors, which hinders incorporating the public buildings into power system operation. To address the problem, this paper proposes an interval DR potential evaluation method and a risk dispatch model to integrate public buildings with uncertainties into power system operation. Firstly, the DR evaluation is developed based on the equivalent thermal parameter (ETP) model, actual outdoor temperature data, and air conditioning (AC) consumption data. To quantify the uncertainties of public buildings, the interval evaluation is given employing the linear regression method considering the confidence bound. Utilizing the evaluation results, the risk dispatch model is proposed to allocate public building reserve based on the chance constrained programming (CCP). Finally, the proposed risk dispatch model is reformulated to a mixed-integer second-order cone programming (MISOCP) for its solution. The proposed evaluation method and the risk dispatch model are validated based on the modified IEEE 39-bus system and actual building data obtained from a southern city in China.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1347-1359"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856823","citationCount":"0","resultStr":"{\"title\":\"Interval Demand Response Potential Evaluation and Risk Dispatch to Incorporate Public Buildings into Power System Operation\",\"authors\":\"Yu Yao;Chengjin Ye;Yuming Zhao;Yi Ding\",\"doi\":\"10.35833/MPCE.2024.000919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Public buildings present substantial demand response (DR) potential, which can participate in the power system operation. However, most public buildings exhibit a high degree of uncertainties due to incomplete information, varying thermal parameters, and stochastic user behaviors, which hinders incorporating the public buildings into power system operation. To address the problem, this paper proposes an interval DR potential evaluation method and a risk dispatch model to integrate public buildings with uncertainties into power system operation. Firstly, the DR evaluation is developed based on the equivalent thermal parameter (ETP) model, actual outdoor temperature data, and air conditioning (AC) consumption data. To quantify the uncertainties of public buildings, the interval evaluation is given employing the linear regression method considering the confidence bound. Utilizing the evaluation results, the risk dispatch model is proposed to allocate public building reserve based on the chance constrained programming (CCP). Finally, the proposed risk dispatch model is reformulated to a mixed-integer second-order cone programming (MISOCP) for its solution. The proposed evaluation method and the risk dispatch model are validated based on the modified IEEE 39-bus system and actual building data obtained from a southern city in China.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"13 4\",\"pages\":\"1347-1359\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856823\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10856823/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856823/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

公共建筑具有巨大的需求响应潜力,可以参与电力系统的运行。然而,由于信息不完全、热力参数变化、用户行为随机等因素,大多数公共建筑存在高度的不确定性,阻碍了公共建筑融入电力系统运行。针对这一问题,本文提出了区间DR潜力评估方法和风险调度模型,将具有不确定性的公共建筑纳入电力系统运行。首先,基于等效热参数(ETP)模型、室外实际温度数据和空调(AC)消耗数据,建立DR评估。为了量化公共建筑的不确定性,采用考虑置信范围的线性回归方法进行区间评价。利用评价结果,提出了基于机会约束规划(CCP)的公共建筑储备分配风险调度模型。最后,将风险调度模型转化为混合整数二阶锥规划(MISOCP)求解。基于改进的IEEE 39总线系统和中国南方某城市的实际建筑数据,对所提出的评价方法和风险调度模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval Demand Response Potential Evaluation and Risk Dispatch to Incorporate Public Buildings into Power System Operation
Public buildings present substantial demand response (DR) potential, which can participate in the power system operation. However, most public buildings exhibit a high degree of uncertainties due to incomplete information, varying thermal parameters, and stochastic user behaviors, which hinders incorporating the public buildings into power system operation. To address the problem, this paper proposes an interval DR potential evaluation method and a risk dispatch model to integrate public buildings with uncertainties into power system operation. Firstly, the DR evaluation is developed based on the equivalent thermal parameter (ETP) model, actual outdoor temperature data, and air conditioning (AC) consumption data. To quantify the uncertainties of public buildings, the interval evaluation is given employing the linear regression method considering the confidence bound. Utilizing the evaluation results, the risk dispatch model is proposed to allocate public building reserve based on the chance constrained programming (CCP). Finally, the proposed risk dispatch model is reformulated to a mixed-integer second-order cone programming (MISOCP) for its solution. The proposed evaluation method and the risk dispatch model are validated based on the modified IEEE 39-bus system and actual building data obtained from a southern city in China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Modern Power Systems and Clean Energy
Journal of Modern Power Systems and Clean Energy ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
12.30
自引率
14.30%
发文量
97
审稿时长
13 weeks
期刊介绍: Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信