{"title":"基于动态估计的大型可再生能源输电线路保护","authors":"Meng Li;Ming Nie;Jinghan He;Huiyuan Zhang","doi":"10.35833/MPCE.2024.000633","DOIUrl":null,"url":null,"abstract":"The development of low-carbon energy systems and renewable energy sources (RESs) are critical to solving the energy crisis around the world. However, renewable energy generation control strategies lead to fault characteristics such as fault current amplitude limitation and phase angle distortion. Focusing on large-scale renewable energy transmission lines, the sensitivity of traditional current differential protection and distance protection may be reduced, and there is even the risk of maloperation. Therefore, a suitable transmission line model is established, which considers the distributed capacitance. Afterward, a novel dynamic state estimation based protection (DSEBP) for large-scale renewable energy transmission lines is proposed. The proposed DSEBP adopts instantaneous measurements and additional protection criteria to ensure the quick action and reliability. Finally, faults are identified by checking the matching degree between the actual measurements and the established transmission line model. The performance of the proposed DSEBP is verified through PSCAD/EMTDC and real-time digital simulator (RTDS) hardware-in-loop tests. The results demonstrate that the proposed DSEBP can identify various types of faults quickly and reliably. Meanwhile, the proposed DSEBP has a better capability to withstand fault resistance and disturbance.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1188-1198"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10785255","citationCount":"0","resultStr":"{\"title\":\"Dynamic State Estimation Based Protection for Large-Scale Renewable Energy Transmission Lines\",\"authors\":\"Meng Li;Ming Nie;Jinghan He;Huiyuan Zhang\",\"doi\":\"10.35833/MPCE.2024.000633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of low-carbon energy systems and renewable energy sources (RESs) are critical to solving the energy crisis around the world. However, renewable energy generation control strategies lead to fault characteristics such as fault current amplitude limitation and phase angle distortion. Focusing on large-scale renewable energy transmission lines, the sensitivity of traditional current differential protection and distance protection may be reduced, and there is even the risk of maloperation. Therefore, a suitable transmission line model is established, which considers the distributed capacitance. Afterward, a novel dynamic state estimation based protection (DSEBP) for large-scale renewable energy transmission lines is proposed. The proposed DSEBP adopts instantaneous measurements and additional protection criteria to ensure the quick action and reliability. Finally, faults are identified by checking the matching degree between the actual measurements and the established transmission line model. The performance of the proposed DSEBP is verified through PSCAD/EMTDC and real-time digital simulator (RTDS) hardware-in-loop tests. The results demonstrate that the proposed DSEBP can identify various types of faults quickly and reliably. Meanwhile, the proposed DSEBP has a better capability to withstand fault resistance and disturbance.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"13 4\",\"pages\":\"1188-1198\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10785255\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10785255/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10785255/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic State Estimation Based Protection for Large-Scale Renewable Energy Transmission Lines
The development of low-carbon energy systems and renewable energy sources (RESs) are critical to solving the energy crisis around the world. However, renewable energy generation control strategies lead to fault characteristics such as fault current amplitude limitation and phase angle distortion. Focusing on large-scale renewable energy transmission lines, the sensitivity of traditional current differential protection and distance protection may be reduced, and there is even the risk of maloperation. Therefore, a suitable transmission line model is established, which considers the distributed capacitance. Afterward, a novel dynamic state estimation based protection (DSEBP) for large-scale renewable energy transmission lines is proposed. The proposed DSEBP adopts instantaneous measurements and additional protection criteria to ensure the quick action and reliability. Finally, faults are identified by checking the matching degree between the actual measurements and the established transmission line model. The performance of the proposed DSEBP is verified through PSCAD/EMTDC and real-time digital simulator (RTDS) hardware-in-loop tests. The results demonstrate that the proposed DSEBP can identify various types of faults quickly and reliably. Meanwhile, the proposed DSEBP has a better capability to withstand fault resistance and disturbance.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.