HIF:用于高效动态点去除的高度间隔滤波

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Shufang Zhang;Tao Jiang;Jiazheng Wu;Ziyu Meng;Ziyang Zhang;Shan An
{"title":"HIF:用于高效动态点去除的高度间隔滤波","authors":"Shufang Zhang;Tao Jiang;Jiazheng Wu;Ziyu Meng;Ziyang Zhang;Shan An","doi":"10.1109/LRA.2025.3587843","DOIUrl":null,"url":null,"abstract":"3D point cloud mapping is crucial for localization and navigation, but residual traces of dynamic objects compromise map quality, posing a key challenge for real-time applications in dynamic environments. Existing approaches, however, often incur significant computational overhead, making it difficult to meet the real-time processing requirements. To address this issue, we introduce the Height Interval Filtering (HIF) method, which constructs pillar-based height interval representations to probabilistically model the vertical dimension and updates interval probabilities using Bayes filter. Furthermore, we propose a low-height preservation strategy that improves the detection of unknown spaces, reducing misclassification in areas blocked by obstacles. Experiments on public datasets show that HIF achieves a 7.7× improvement in runtime while maintaining comparable accuracy and enhanced robustness in complex, dynamic environments. The code will be publicly available.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 9","pages":"8938-8945"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HIF: Height Interval Filtering for Efficient Dynamic Points Removal\",\"authors\":\"Shufang Zhang;Tao Jiang;Jiazheng Wu;Ziyu Meng;Ziyang Zhang;Shan An\",\"doi\":\"10.1109/LRA.2025.3587843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D point cloud mapping is crucial for localization and navigation, but residual traces of dynamic objects compromise map quality, posing a key challenge for real-time applications in dynamic environments. Existing approaches, however, often incur significant computational overhead, making it difficult to meet the real-time processing requirements. To address this issue, we introduce the Height Interval Filtering (HIF) method, which constructs pillar-based height interval representations to probabilistically model the vertical dimension and updates interval probabilities using Bayes filter. Furthermore, we propose a low-height preservation strategy that improves the detection of unknown spaces, reducing misclassification in areas blocked by obstacles. Experiments on public datasets show that HIF achieves a 7.7× improvement in runtime while maintaining comparable accuracy and enhanced robustness in complex, dynamic environments. The code will be publicly available.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 9\",\"pages\":\"8938-8945\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11077378/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11077378/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

3D点云映射对于定位和导航至关重要,但动态物体的残留痕迹会影响地图质量,对动态环境中的实时应用提出了关键挑战。然而,现有的方法通常会产生大量的计算开销,使其难以满足实时处理需求。为了解决这个问题,我们引入了高度间隔过滤(HIF)方法,该方法构建基于柱的高度间隔表示来对垂直维度进行概率建模,并使用贝叶斯滤波器更新间隔概率。此外,我们提出了一种低高度保存策略,提高了对未知空间的检测,减少了被障碍物阻挡区域的误分类。在公共数据集上的实验表明,HIF在运行时间上提高了7.7倍,同时在复杂的动态环境中保持了相当的精度和增强的鲁棒性。代码将是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HIF: Height Interval Filtering for Efficient Dynamic Points Removal
3D point cloud mapping is crucial for localization and navigation, but residual traces of dynamic objects compromise map quality, posing a key challenge for real-time applications in dynamic environments. Existing approaches, however, often incur significant computational overhead, making it difficult to meet the real-time processing requirements. To address this issue, we introduce the Height Interval Filtering (HIF) method, which constructs pillar-based height interval representations to probabilistically model the vertical dimension and updates interval probabilities using Bayes filter. Furthermore, we propose a low-height preservation strategy that improves the detection of unknown spaces, reducing misclassification in areas blocked by obstacles. Experiments on public datasets show that HIF achieves a 7.7× improvement in runtime while maintaining comparable accuracy and enhanced robustness in complex, dynamic environments. The code will be publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信