Claas Ehmke;Quentin Boehler;Salvador Pané;Bradley J. Nelson
{"title":"再磁化执行器的设计与优化","authors":"Claas Ehmke;Quentin Boehler;Salvador Pané;Bradley J. Nelson","doi":"10.1109/TMAG.2025.3585420","DOIUrl":null,"url":null,"abstract":"Magnetization programming is a promising approach in the field of robotic magnetic navigation in which magnetized devices are manipulated using externally generated magnetic fields. This work explores the design and optimization of remagnetization actuators to dynamically reprogram the magnetization of the devices to be manipulated. The influence of the material and geometry of the magnet to be programmed and of the remagnetization circuit parameters on the performance of the programming is investigated. Performance assessment focuses on maximizing the achievable torque on the magnet and optimizing the dynamics and efficiency of the remagnetization. The key findings of this study are that AlNiCo 9 magnets can deliver superior torque compared to AlNiCo 5, and that using hollow instead of solid cylindrical magnets can improve the remagnetization process with only a limited reduction in its maximum achievable torque. These findings provide an important foundation for advancing the performance and reliability of remagnetization actuators in magnetic control systems.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 8","pages":"1-10"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of Remagnetization Actuators\",\"authors\":\"Claas Ehmke;Quentin Boehler;Salvador Pané;Bradley J. Nelson\",\"doi\":\"10.1109/TMAG.2025.3585420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetization programming is a promising approach in the field of robotic magnetic navigation in which magnetized devices are manipulated using externally generated magnetic fields. This work explores the design and optimization of remagnetization actuators to dynamically reprogram the magnetization of the devices to be manipulated. The influence of the material and geometry of the magnet to be programmed and of the remagnetization circuit parameters on the performance of the programming is investigated. Performance assessment focuses on maximizing the achievable torque on the magnet and optimizing the dynamics and efficiency of the remagnetization. The key findings of this study are that AlNiCo 9 magnets can deliver superior torque compared to AlNiCo 5, and that using hollow instead of solid cylindrical magnets can improve the remagnetization process with only a limited reduction in its maximum achievable torque. These findings provide an important foundation for advancing the performance and reliability of remagnetization actuators in magnetic control systems.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 8\",\"pages\":\"1-10\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11063424/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11063424/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and Optimization of Remagnetization Actuators
Magnetization programming is a promising approach in the field of robotic magnetic navigation in which magnetized devices are manipulated using externally generated magnetic fields. This work explores the design and optimization of remagnetization actuators to dynamically reprogram the magnetization of the devices to be manipulated. The influence of the material and geometry of the magnet to be programmed and of the remagnetization circuit parameters on the performance of the programming is investigated. Performance assessment focuses on maximizing the achievable torque on the magnet and optimizing the dynamics and efficiency of the remagnetization. The key findings of this study are that AlNiCo 9 magnets can deliver superior torque compared to AlNiCo 5, and that using hollow instead of solid cylindrical magnets can improve the remagnetization process with only a limited reduction in its maximum achievable torque. These findings provide an important foundation for advancing the performance and reliability of remagnetization actuators in magnetic control systems.
期刊介绍:
Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.