Agastya Raj;Zehao Wang;Tingjun Chen;Daniel C. Kilper;Marco Ruffini
{"title":"用于EDFA增益谱建模的广义少弹迁移学习结构","authors":"Agastya Raj;Zehao Wang;Tingjun Chen;Daniel C. Kilper;Marco Ruffini","doi":"10.1364/JOCN.560987","DOIUrl":null,"url":null,"abstract":"Accurate modeling of the gain spectrum in erbium-doped fiber amplifiers (EDFAs) is essential for optimizing optical network performance, particularly as networks evolve toward multi-vendor solutions. In this work, we propose a generalized few-shot transfer learning architecture based on a semi-supervised self-normalizing neural network (SS-NN) that leverages internal EDFA features—such as VOA input/output power and attenuation—to improve gain spectrum prediction. Our SS-NN model employs a two-phase training strategy comprising unsupervised pre-training with noise-augmented measurements and supervised fine-tuning with a custom-weighted MSE loss. Furthermore, we extend the framework with transfer learning (TL) techniques that enable both homogeneous (same-feature space) and heterogeneous (different-feature sets) model adaptation across booster, pre-amplifier, and ILA EDFAs. To address feature mismatches in heterogeneous TL, we incorporate a covariance matching loss to align second-order feature statistics between the source and target domains. Extensive experiments conducted across 26 EDFAs in the COSMOS and Open Ireland testbeds demonstrate that the proposed approach significantly reduces the number of measurement requirements on the system while achieving lower mean absolute errors and improved error distributions compared to benchmark methods.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"17 9","pages":"D106-D117"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized few-shot transfer learning architecture for modeling the EDFA gain spectrum\",\"authors\":\"Agastya Raj;Zehao Wang;Tingjun Chen;Daniel C. Kilper;Marco Ruffini\",\"doi\":\"10.1364/JOCN.560987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate modeling of the gain spectrum in erbium-doped fiber amplifiers (EDFAs) is essential for optimizing optical network performance, particularly as networks evolve toward multi-vendor solutions. In this work, we propose a generalized few-shot transfer learning architecture based on a semi-supervised self-normalizing neural network (SS-NN) that leverages internal EDFA features—such as VOA input/output power and attenuation—to improve gain spectrum prediction. Our SS-NN model employs a two-phase training strategy comprising unsupervised pre-training with noise-augmented measurements and supervised fine-tuning with a custom-weighted MSE loss. Furthermore, we extend the framework with transfer learning (TL) techniques that enable both homogeneous (same-feature space) and heterogeneous (different-feature sets) model adaptation across booster, pre-amplifier, and ILA EDFAs. To address feature mismatches in heterogeneous TL, we incorporate a covariance matching loss to align second-order feature statistics between the source and target domains. Extensive experiments conducted across 26 EDFAs in the COSMOS and Open Ireland testbeds demonstrate that the proposed approach significantly reduces the number of measurement requirements on the system while achieving lower mean absolute errors and improved error distributions compared to benchmark methods.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"17 9\",\"pages\":\"D106-D117\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11098563/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11098563/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Generalized few-shot transfer learning architecture for modeling the EDFA gain spectrum
Accurate modeling of the gain spectrum in erbium-doped fiber amplifiers (EDFAs) is essential for optimizing optical network performance, particularly as networks evolve toward multi-vendor solutions. In this work, we propose a generalized few-shot transfer learning architecture based on a semi-supervised self-normalizing neural network (SS-NN) that leverages internal EDFA features—such as VOA input/output power and attenuation—to improve gain spectrum prediction. Our SS-NN model employs a two-phase training strategy comprising unsupervised pre-training with noise-augmented measurements and supervised fine-tuning with a custom-weighted MSE loss. Furthermore, we extend the framework with transfer learning (TL) techniques that enable both homogeneous (same-feature space) and heterogeneous (different-feature sets) model adaptation across booster, pre-amplifier, and ILA EDFAs. To address feature mismatches in heterogeneous TL, we incorporate a covariance matching loss to align second-order feature statistics between the source and target domains. Extensive experiments conducted across 26 EDFAs in the COSMOS and Open Ireland testbeds demonstrate that the proposed approach significantly reduces the number of measurement requirements on the system while achieving lower mean absolute errors and improved error distributions compared to benchmark methods.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.