Youze Fu;Yandong Chen;Zili Wang;Zhiwei Xie;Xuyang Li
{"title":"基于自适应附加阻尼控制的弱电网自同步电压源逆变器的快速频率支持","authors":"Youze Fu;Yandong Chen;Zili Wang;Zhiwei Xie;Xuyang Li","doi":"10.35833/MPCE.2024.000687","DOIUrl":null,"url":null,"abstract":"The self-synchronizing voltage source inverter (SSVSI) is widely studied because of its grid-forming capability. However, the slow response of the active power control loop (APCL) under the weak grid makes it difficult for the SSVSI to quickly support the frequency of a low-inertia grid. In this paper, a grid framework is established to analyze the frequency support service process of the SSVSI, and the shortcomings of the regulation of the damping coefficient and virtual inertia co-efficient for frequency support are analyzed. Then, an adaptive additional damping control method is proposed to optimize the ability of SSVSI to support the grid frequency. The proposed control method adjusts the damping of the APCL without affecting the system steady-state characteristics, which improves the active power response speed of the SSVSI. Besides, the proposed control method adaptively adjusts the additional damping coefficient based on the active power response without measuring the grid parameters. Compared with other forms of control, the proposed control method excels in minimizing the rate of change of frequency (RoCoF) and the frequency deviation (FD) within the grid, without succumbing to the constraints posed by unknown grid parameters. Furthermore, the analysis of the system stability is also presented. Finally, the experimental hardware results obtained from a miniaturized grid proto-type are presented, corroborating the effectiveness of the proposed control method.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"13 4","pages":"1458-1467"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858608","citationCount":"0","resultStr":"{\"title\":\"Fast Frequency Support of Self-Synchronizing Voltage Source Inverter Under Weak Grid Based on Adaptive Additional Damping Control\",\"authors\":\"Youze Fu;Yandong Chen;Zili Wang;Zhiwei Xie;Xuyang Li\",\"doi\":\"10.35833/MPCE.2024.000687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The self-synchronizing voltage source inverter (SSVSI) is widely studied because of its grid-forming capability. However, the slow response of the active power control loop (APCL) under the weak grid makes it difficult for the SSVSI to quickly support the frequency of a low-inertia grid. In this paper, a grid framework is established to analyze the frequency support service process of the SSVSI, and the shortcomings of the regulation of the damping coefficient and virtual inertia co-efficient for frequency support are analyzed. Then, an adaptive additional damping control method is proposed to optimize the ability of SSVSI to support the grid frequency. The proposed control method adjusts the damping of the APCL without affecting the system steady-state characteristics, which improves the active power response speed of the SSVSI. Besides, the proposed control method adaptively adjusts the additional damping coefficient based on the active power response without measuring the grid parameters. Compared with other forms of control, the proposed control method excels in minimizing the rate of change of frequency (RoCoF) and the frequency deviation (FD) within the grid, without succumbing to the constraints posed by unknown grid parameters. Furthermore, the analysis of the system stability is also presented. Finally, the experimental hardware results obtained from a miniaturized grid proto-type are presented, corroborating the effectiveness of the proposed control method.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"13 4\",\"pages\":\"1458-1467\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858608\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10858608/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10858608/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fast Frequency Support of Self-Synchronizing Voltage Source Inverter Under Weak Grid Based on Adaptive Additional Damping Control
The self-synchronizing voltage source inverter (SSVSI) is widely studied because of its grid-forming capability. However, the slow response of the active power control loop (APCL) under the weak grid makes it difficult for the SSVSI to quickly support the frequency of a low-inertia grid. In this paper, a grid framework is established to analyze the frequency support service process of the SSVSI, and the shortcomings of the regulation of the damping coefficient and virtual inertia co-efficient for frequency support are analyzed. Then, an adaptive additional damping control method is proposed to optimize the ability of SSVSI to support the grid frequency. The proposed control method adjusts the damping of the APCL without affecting the system steady-state characteristics, which improves the active power response speed of the SSVSI. Besides, the proposed control method adaptively adjusts the additional damping coefficient based on the active power response without measuring the grid parameters. Compared with other forms of control, the proposed control method excels in minimizing the rate of change of frequency (RoCoF) and the frequency deviation (FD) within the grid, without succumbing to the constraints posed by unknown grid parameters. Furthermore, the analysis of the system stability is also presented. Finally, the experimental hardware results obtained from a miniaturized grid proto-type are presented, corroborating the effectiveness of the proposed control method.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.