多孔铋基材料在钠离子电池中的应用

IF 4.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jiaming Zhang, Xiaoyi Lu, Ming Li and Zhipeng Sun
{"title":"多孔铋基材料在钠离子电池中的应用","authors":"Jiaming Zhang, Xiaoyi Lu, Ming Li and Zhipeng Sun","doi":"10.1039/D5CC02972D","DOIUrl":null,"url":null,"abstract":"<p >Sodium-ion batteries (SIBs) offer a sustainable alternative to lithium-ion systems, leveraging resource availability and enhanced safety. This review describes the application of porous bismuth (Bi)-based materials in sodium ion batteries. Bismuth-based materials are emerging as promising anode candidates due to their high capacity, manageable volume expansion, and tunable porosity. Their performance is driven by a synergistic dual-mechanism Na<small><sup>+</sup></small> storage combining alloying and conversion reactions. Hierarchical pore engineering (micropores for interfacial storage, mesopores for ion diffusion, macropores for high loading) effectively mitigates volume strain and extends cycle life. Advanced synthetic strategies (<em>e.g.</em>, MOF-derived pyrolysis) enable fabrication of carbon-composite architectures featuring hollow frameworks and N-doped coatings. These designs deliver exceptional rate capability and accelerated ion transport. While ether-based electrolytes and heterointerface engineering optimize interfacial stability, challenges remain in scalability, electrolyte compatibility, and full-cell integration. Future development requires ML-guided structural optimization, green synthesis, and system-level engineering to realize the potential of Bi-based anodes for wide-temperature, high-power SIBs.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" 72","pages":" 13616-13631"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of porous bismuth-based materials in sodium ion batteries\",\"authors\":\"Jiaming Zhang, Xiaoyi Lu, Ming Li and Zhipeng Sun\",\"doi\":\"10.1039/D5CC02972D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sodium-ion batteries (SIBs) offer a sustainable alternative to lithium-ion systems, leveraging resource availability and enhanced safety. This review describes the application of porous bismuth (Bi)-based materials in sodium ion batteries. Bismuth-based materials are emerging as promising anode candidates due to their high capacity, manageable volume expansion, and tunable porosity. Their performance is driven by a synergistic dual-mechanism Na<small><sup>+</sup></small> storage combining alloying and conversion reactions. Hierarchical pore engineering (micropores for interfacial storage, mesopores for ion diffusion, macropores for high loading) effectively mitigates volume strain and extends cycle life. Advanced synthetic strategies (<em>e.g.</em>, MOF-derived pyrolysis) enable fabrication of carbon-composite architectures featuring hollow frameworks and N-doped coatings. These designs deliver exceptional rate capability and accelerated ion transport. While ether-based electrolytes and heterointerface engineering optimize interfacial stability, challenges remain in scalability, electrolyte compatibility, and full-cell integration. Future development requires ML-guided structural optimization, green synthesis, and system-level engineering to realize the potential of Bi-based anodes for wide-temperature, high-power SIBs.</p>\",\"PeriodicalId\":67,\"journal\":{\"name\":\"Chemical Communications\",\"volume\":\" 72\",\"pages\":\" 13616-13631\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc02972d\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cc/d5cc02972d","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于锂的稀缺性和安全性问题,钠离子电池(sib)已经成为锂离子系统的可持续替代品。铋(Bi)基材料具有高理论容量(385 mAh·g⁻¹)、适度的体积膨胀(200-244%)和可调的多孔结构,作为先进的阳极候选者越来越受到重视。本文系统地概述了铋基材料中的双重钠储存机制:合金化(Bi→NaBi→Na₃Bi)和转化型反应(Bi₂O₃→Bi/Na₂O),它们协同提高了可逆容量和动力学。合理设计多孔结构-用于界面电荷存储的微孔(2纳米),用于平衡离子扩散的介孔(2 - 50纳米),以及用于高负载应用的大孔(50纳米)-显着减轻了体积张力并延长了循环稳定性(例如,Bi@NHCS/C在10 A·g⁻¹下进行20,000次循环后仍保持67%的容量)。创新的合成策略,包括溶剂热法、mof衍生的热解和空间限制合成,使中空碳框架、氮掺杂涂层和均匀分散的Bi纳米颗粒的分层复合材料的制造成为可能。这些结构提供了卓越的速率性能(224 mAh·g⁻¹在200 A·g⁻¹时)和加速离子传输(扩散系数提高了2-3个数量级)。结合低吸附能醚电解质和异质界面工程,这种设计优化了界面稳定性。然而,在可扩展生产、电解质兼容性和全电池集成方面仍然存在挑战。未来的工作必须优先考虑机器学习引导的结构优化、绿色合成方案和整体系统工程,以释放铋基材料在宽温度范围和高功率储能方面的潜力。该综述为推进高能量密度、长寿命sib提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Application of porous bismuth-based materials in sodium ion batteries

Application of porous bismuth-based materials in sodium ion batteries

Sodium-ion batteries (SIBs) offer a sustainable alternative to lithium-ion systems, leveraging resource availability and enhanced safety. This review describes the application of porous bismuth (Bi)-based materials in sodium ion batteries. Bismuth-based materials are emerging as promising anode candidates due to their high capacity, manageable volume expansion, and tunable porosity. Their performance is driven by a synergistic dual-mechanism Na+ storage combining alloying and conversion reactions. Hierarchical pore engineering (micropores for interfacial storage, mesopores for ion diffusion, macropores for high loading) effectively mitigates volume strain and extends cycle life. Advanced synthetic strategies (e.g., MOF-derived pyrolysis) enable fabrication of carbon-composite architectures featuring hollow frameworks and N-doped coatings. These designs deliver exceptional rate capability and accelerated ion transport. While ether-based electrolytes and heterointerface engineering optimize interfacial stability, challenges remain in scalability, electrolyte compatibility, and full-cell integration. Future development requires ML-guided structural optimization, green synthesis, and system-level engineering to realize the potential of Bi-based anodes for wide-temperature, high-power SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信