通过莱顿弗罗斯特抑制增强的直接冷却减轻高超声速热障

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ji-Xiang Wang, Mingliang Zhong, Jia-Xin Li, Shaolong Wang, Jiang Bian, Yufeng Mao, Hongmei Wang
{"title":"通过莱顿弗罗斯特抑制增强的直接冷却减轻高超声速热障","authors":"Ji-Xiang Wang, Mingliang Zhong, Jia-Xin Li, Shaolong Wang, Jiang Bian, Yufeng Mao, Hongmei Wang","doi":"10.1038/s41467-025-62120-2","DOIUrl":null,"url":null,"abstract":"<p>Heat barrier, the unrestricted increase in airplane or rocket speeds caused by aerodynamic heating, which—without adequate provisions for cooling the exposed surfaces—can lead to the loss of a hypersonic vehicle’s reusability, maneuverability, and cost-effectiveness. To date, indirect thermal protection methods, such as regenerative cooling, film cooling, and transpiration cooling, have proven to be complex and inefficient. Here, we propose a direct liquid cooling system to mitigate the heat barrier, utilizing a blunt-sharp structured thermal armor (STA)—a recently proposed material [36] to elevate the Leidenfrost point. The fiber-metal nano-/micro-STA withstands rigorous simulated hypersonic aerodynamic heating using butane and acetylene flames, ensuring effective temperature management in scenarios where flame temperatures reach up to 3000 °C—far exceeding the melting point of the STA substrate. Systematic cycling and durability tests further confirm the STA’s exceptional tolerance and robustness under extreme conditions. This work offers an efficient thermal protection method for hypersonic vehicles.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating hypersonic heat barrier via direct cooling enhanced by leidenfrost inhibition\",\"authors\":\"Ji-Xiang Wang, Mingliang Zhong, Jia-Xin Li, Shaolong Wang, Jiang Bian, Yufeng Mao, Hongmei Wang\",\"doi\":\"10.1038/s41467-025-62120-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heat barrier, the unrestricted increase in airplane or rocket speeds caused by aerodynamic heating, which—without adequate provisions for cooling the exposed surfaces—can lead to the loss of a hypersonic vehicle’s reusability, maneuverability, and cost-effectiveness. To date, indirect thermal protection methods, such as regenerative cooling, film cooling, and transpiration cooling, have proven to be complex and inefficient. Here, we propose a direct liquid cooling system to mitigate the heat barrier, utilizing a blunt-sharp structured thermal armor (STA)—a recently proposed material [36] to elevate the Leidenfrost point. The fiber-metal nano-/micro-STA withstands rigorous simulated hypersonic aerodynamic heating using butane and acetylene flames, ensuring effective temperature management in scenarios where flame temperatures reach up to 3000 °C—far exceeding the melting point of the STA substrate. Systematic cycling and durability tests further confirm the STA’s exceptional tolerance and robustness under extreme conditions. This work offers an efficient thermal protection method for hypersonic vehicles.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62120-2\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62120-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热障,由空气动力学加热引起的飞机或火箭速度的无限制增加,如果没有足够的冷却暴露表面的规定,可能导致高超音速飞行器的可重复使用性,机动性和成本效益的损失。迄今为止,间接热保护方法,如再生冷却、膜冷却和蒸腾冷却,已被证明是复杂和低效的。在这里,我们提出了一种直接液体冷却系统来减轻热障,利用钝尖结构热装甲(STA) -一种最近提出的材料[36]来提高莱顿弗罗斯特点。金属纤维纳米/微型STA可以承受丁烷和乙炔火焰的严格模拟高超声速气动加热,确保在火焰温度高达3000°c的情况下有效的温度管理——远远超过STA衬底的熔点。系统的循环和耐久性测试进一步证实了STA在极端条件下的卓越耐受性和坚固性。这项工作为高超声速飞行器提供了一种有效的热防护方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mitigating hypersonic heat barrier via direct cooling enhanced by leidenfrost inhibition

Mitigating hypersonic heat barrier via direct cooling enhanced by leidenfrost inhibition

Heat barrier, the unrestricted increase in airplane or rocket speeds caused by aerodynamic heating, which—without adequate provisions for cooling the exposed surfaces—can lead to the loss of a hypersonic vehicle’s reusability, maneuverability, and cost-effectiveness. To date, indirect thermal protection methods, such as regenerative cooling, film cooling, and transpiration cooling, have proven to be complex and inefficient. Here, we propose a direct liquid cooling system to mitigate the heat barrier, utilizing a blunt-sharp structured thermal armor (STA)—a recently proposed material [36] to elevate the Leidenfrost point. The fiber-metal nano-/micro-STA withstands rigorous simulated hypersonic aerodynamic heating using butane and acetylene flames, ensuring effective temperature management in scenarios where flame temperatures reach up to 3000 °C—far exceeding the melting point of the STA substrate. Systematic cycling and durability tests further confirm the STA’s exceptional tolerance and robustness under extreme conditions. This work offers an efficient thermal protection method for hypersonic vehicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信