Rebecca Büchner, Jose García-Guirado, Jaime Ortega Arroyo, Romain Quidant
{"title":"光学活性的宽视场光谱成像","authors":"Rebecca Büchner, Jose García-Guirado, Jaime Ortega Arroyo, Romain Quidant","doi":"10.1038/s41566-025-01722-0","DOIUrl":null,"url":null,"abstract":"<p>Optical activity spectroscopy techniques, such as circular dichroism and optical rotatory dispersion, are essential for investigating the chiral properties of molecules and materials. However, current methods often struggle to analyse heterogeneous and spatially varying chiral samples. On one hand, spectroscopic approaches, although sensitive, often require large sample volumes and produce ensemble-averaged data. On the other hand, chiral imaging delivers spatial resolution at the expense of time-consuming confocal scanning and complex instrumentation. Addressing this gap, we introduce a platform for wide-field, spectrally resolved optical activity imaging. Using polarization-sensitive off-axis holography to simultaneously capture left- and right-circularly polarized components, our system allows the single-shot retrieval of circular dichroism and optical rotatory dispersion images, as well as eliminating artefacts caused by linear anisotropies. Our results are not only consistent with traditional circular dichroism spectroscopy but also demonstrate the ability to spatially resolve local chirality variations lost by ensemble averaging, including enantiomeric excess. This platform holds great promise for analysing complex biological and material samples, expanding the scope of chiral characterization.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"26 1","pages":""},"PeriodicalIF":32.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wide-field spectroscopic imaging of optical activity\",\"authors\":\"Rebecca Büchner, Jose García-Guirado, Jaime Ortega Arroyo, Romain Quidant\",\"doi\":\"10.1038/s41566-025-01722-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Optical activity spectroscopy techniques, such as circular dichroism and optical rotatory dispersion, are essential for investigating the chiral properties of molecules and materials. However, current methods often struggle to analyse heterogeneous and spatially varying chiral samples. On one hand, spectroscopic approaches, although sensitive, often require large sample volumes and produce ensemble-averaged data. On the other hand, chiral imaging delivers spatial resolution at the expense of time-consuming confocal scanning and complex instrumentation. Addressing this gap, we introduce a platform for wide-field, spectrally resolved optical activity imaging. Using polarization-sensitive off-axis holography to simultaneously capture left- and right-circularly polarized components, our system allows the single-shot retrieval of circular dichroism and optical rotatory dispersion images, as well as eliminating artefacts caused by linear anisotropies. Our results are not only consistent with traditional circular dichroism spectroscopy but also demonstrate the ability to spatially resolve local chirality variations lost by ensemble averaging, including enantiomeric excess. This platform holds great promise for analysing complex biological and material samples, expanding the scope of chiral characterization.</p>\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":32.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-025-01722-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01722-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Wide-field spectroscopic imaging of optical activity
Optical activity spectroscopy techniques, such as circular dichroism and optical rotatory dispersion, are essential for investigating the chiral properties of molecules and materials. However, current methods often struggle to analyse heterogeneous and spatially varying chiral samples. On one hand, spectroscopic approaches, although sensitive, often require large sample volumes and produce ensemble-averaged data. On the other hand, chiral imaging delivers spatial resolution at the expense of time-consuming confocal scanning and complex instrumentation. Addressing this gap, we introduce a platform for wide-field, spectrally resolved optical activity imaging. Using polarization-sensitive off-axis holography to simultaneously capture left- and right-circularly polarized components, our system allows the single-shot retrieval of circular dichroism and optical rotatory dispersion images, as well as eliminating artefacts caused by linear anisotropies. Our results are not only consistent with traditional circular dichroism spectroscopy but also demonstrate the ability to spatially resolve local chirality variations lost by ensemble averaging, including enantiomeric excess. This platform holds great promise for analysing complex biological and material samples, expanding the scope of chiral characterization.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.