Andrada I. Velea;Raphael Panskus;Benedikt Szabo;Vera A.-L. Oppelt;Lukas Holzapfel;Cyril B. Karuthedath;Abhilash T. Sebastian;Thomas Stieglitz;Alessandro S. Savoia;Vasiliki Giagka
{"title":"软封装对可植入器件PMUTs接收性能的影响。","authors":"Andrada I. Velea;Raphael Panskus;Benedikt Szabo;Vera A.-L. Oppelt;Lukas Holzapfel;Cyril B. Karuthedath;Abhilash T. Sebastian;Thomas Stieglitz;Alessandro S. Savoia;Vasiliki Giagka","doi":"10.1109/TUFFC.2025.3592740","DOIUrl":null,"url":null,"abstract":"Ultrasound (US) is a promising modality for wirelessly powering implantable devices, requiring encapsulated receivers to ensure long-term stability. Traditional hermetic packaging often limits acoustic transmission, making polymer-based encapsulation a more suitable alternative. This study investigates how implant-grade polymers, thermoplastic polyurethane (TPU), parylene-C, and medical-grade silicones (MED-1000 and MED2-4213), affect the receive performance of piezoelectric micromachined ultrasonic transducers (PMUTs). Simulations and measurements between 1 and 7 MHz show that all tested materials exhibit transmission coefficients above 94% at nanometer- and micrometer-scale thicknesses, confirming their acoustic transparency. The results show that although coated PMUTs are acoustically well matched with the surrounding water medium, the added mechanical load of the coating can hinder membrane motion and reduce the energy transferred to the PMUTs. Modeling and experimental data demonstrate that stiffer coatings, such as parylene-C, lead to a reduced sensitivity when similar thicknesses are used. Likewise, residual stress in materials like MED-1000 can also degrade the performance. These effects are not evident from acoustic transmission measurements alone, underscoring the need to assess both acoustic and mechanical properties when selecting encapsulation materials. In general, softer materials offer excellent acoustic performance for PMUT encapsulation, while stiffer materials must be applied in thinner layers to avoid impairing PMUT function.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 9","pages":"1282-1292"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Soft Encapsulation on the Receive Performance of PMUTs for Implantable Devices\",\"authors\":\"Andrada I. Velea;Raphael Panskus;Benedikt Szabo;Vera A.-L. Oppelt;Lukas Holzapfel;Cyril B. Karuthedath;Abhilash T. Sebastian;Thomas Stieglitz;Alessandro S. Savoia;Vasiliki Giagka\",\"doi\":\"10.1109/TUFFC.2025.3592740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasound (US) is a promising modality for wirelessly powering implantable devices, requiring encapsulated receivers to ensure long-term stability. Traditional hermetic packaging often limits acoustic transmission, making polymer-based encapsulation a more suitable alternative. This study investigates how implant-grade polymers, thermoplastic polyurethane (TPU), parylene-C, and medical-grade silicones (MED-1000 and MED2-4213), affect the receive performance of piezoelectric micromachined ultrasonic transducers (PMUTs). Simulations and measurements between 1 and 7 MHz show that all tested materials exhibit transmission coefficients above 94% at nanometer- and micrometer-scale thicknesses, confirming their acoustic transparency. The results show that although coated PMUTs are acoustically well matched with the surrounding water medium, the added mechanical load of the coating can hinder membrane motion and reduce the energy transferred to the PMUTs. Modeling and experimental data demonstrate that stiffer coatings, such as parylene-C, lead to a reduced sensitivity when similar thicknesses are used. Likewise, residual stress in materials like MED-1000 can also degrade the performance. These effects are not evident from acoustic transmission measurements alone, underscoring the need to assess both acoustic and mechanical properties when selecting encapsulation materials. In general, softer materials offer excellent acoustic performance for PMUT encapsulation, while stiffer materials must be applied in thinner layers to avoid impairing PMUT function.\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"72 9\",\"pages\":\"1282-1292\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11096723/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11096723/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Effects of Soft Encapsulation on the Receive Performance of PMUTs for Implantable Devices
Ultrasound (US) is a promising modality for wirelessly powering implantable devices, requiring encapsulated receivers to ensure long-term stability. Traditional hermetic packaging often limits acoustic transmission, making polymer-based encapsulation a more suitable alternative. This study investigates how implant-grade polymers, thermoplastic polyurethane (TPU), parylene-C, and medical-grade silicones (MED-1000 and MED2-4213), affect the receive performance of piezoelectric micromachined ultrasonic transducers (PMUTs). Simulations and measurements between 1 and 7 MHz show that all tested materials exhibit transmission coefficients above 94% at nanometer- and micrometer-scale thicknesses, confirming their acoustic transparency. The results show that although coated PMUTs are acoustically well matched with the surrounding water medium, the added mechanical load of the coating can hinder membrane motion and reduce the energy transferred to the PMUTs. Modeling and experimental data demonstrate that stiffer coatings, such as parylene-C, lead to a reduced sensitivity when similar thicknesses are used. Likewise, residual stress in materials like MED-1000 can also degrade the performance. These effects are not evident from acoustic transmission measurements alone, underscoring the need to assess both acoustic and mechanical properties when selecting encapsulation materials. In general, softer materials offer excellent acoustic performance for PMUT encapsulation, while stiffer materials must be applied in thinner layers to avoid impairing PMUT function.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.