Dyuti Chatterjee, Sneha Mittal, Milan Kumar Jena and Biswarup Pathak*,
{"title":"机器学习促进了血液抗原的量子分析。","authors":"Dyuti Chatterjee, Sneha Mittal, Milan Kumar Jena and Biswarup Pathak*, ","doi":"10.1021/acs.jpclett.5c01461","DOIUrl":null,"url":null,"abstract":"<p >The molecular-level characterization of glycans, a challenging yet highly desirable goal, is crucial for the comprehensive advancement of glycosciences. Despite significant advances in analytical techniques, including NMR and mass spectrometry, structural and configurational complexity hinders the ability to identify carbohydrates, especially high-order saccharides with regioisomeric glycosidic linkages. In this article, we present a computational methodology that utilizes a quantum tunneling method coupled with machine learning (ML) to recognize a wide range of blood antigens simultaneously. Random forest classifier with SHapley Additive exPlanations (SHAP) interpretability performs rapid quantum profiling of all considered molecules with good precision and sensitivity. Our proposed ML-enhanced quantum methodology offers a powerful alternative to conventional techniques, facilitating accurate and high-throughput characterization of carbohydrates by performing “sugar calling” from their transmission signatures.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 31","pages":"7824–7833"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Boosted Quantum-Profiling of Blood Antigens\",\"authors\":\"Dyuti Chatterjee, Sneha Mittal, Milan Kumar Jena and Biswarup Pathak*, \",\"doi\":\"10.1021/acs.jpclett.5c01461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The molecular-level characterization of glycans, a challenging yet highly desirable goal, is crucial for the comprehensive advancement of glycosciences. Despite significant advances in analytical techniques, including NMR and mass spectrometry, structural and configurational complexity hinders the ability to identify carbohydrates, especially high-order saccharides with regioisomeric glycosidic linkages. In this article, we present a computational methodology that utilizes a quantum tunneling method coupled with machine learning (ML) to recognize a wide range of blood antigens simultaneously. Random forest classifier with SHapley Additive exPlanations (SHAP) interpretability performs rapid quantum profiling of all considered molecules with good precision and sensitivity. Our proposed ML-enhanced quantum methodology offers a powerful alternative to conventional techniques, facilitating accurate and high-throughput characterization of carbohydrates by performing “sugar calling” from their transmission signatures.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 31\",\"pages\":\"7824–7833\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01461\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01461","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Machine Learning Boosted Quantum-Profiling of Blood Antigens
The molecular-level characterization of glycans, a challenging yet highly desirable goal, is crucial for the comprehensive advancement of glycosciences. Despite significant advances in analytical techniques, including NMR and mass spectrometry, structural and configurational complexity hinders the ability to identify carbohydrates, especially high-order saccharides with regioisomeric glycosidic linkages. In this article, we present a computational methodology that utilizes a quantum tunneling method coupled with machine learning (ML) to recognize a wide range of blood antigens simultaneously. Random forest classifier with SHapley Additive exPlanations (SHAP) interpretability performs rapid quantum profiling of all considered molecules with good precision and sensitivity. Our proposed ML-enhanced quantum methodology offers a powerful alternative to conventional techniques, facilitating accurate and high-throughput characterization of carbohydrates by performing “sugar calling” from their transmission signatures.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.