拉帕替尼药物致肝毒性的分子机制研究。

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Qinying Yu, Li Ma, Leah M Norona, Peter S Dragovich, Jianshuang Wang, Shuai Wang, Yi-Chen Chen, S Cyrus Khojasteh, Jane R Kenny, Brian J Dean, Cornelis E C A Hop, Sarah J Robinson, Ke Sherry Li, Lionel Cheruzel, Aaron Fullerton, Yunxing Cheng, Mingtao He, Xinpeng Wang, Klarissa D Jackson, Zhengyin Yan, Donglu Zhang
{"title":"拉帕替尼药物致肝毒性的分子机制研究。","authors":"Qinying Yu, Li Ma, Leah M Norona, Peter S Dragovich, Jianshuang Wang, Shuai Wang, Yi-Chen Chen, S Cyrus Khojasteh, Jane R Kenny, Brian J Dean, Cornelis E C A Hop, Sarah J Robinson, Ke Sherry Li, Lionel Cheruzel, Aaron Fullerton, Yunxing Cheng, Mingtao He, Xinpeng Wang, Klarissa D Jackson, Zhengyin Yan, Donglu Zhang","doi":"10.1021/acs.jmedchem.5c01305","DOIUrl":null,"url":null,"abstract":"<p><p>DILI (drug-induced liver injury) remains a critical liability in drug discovery and development. However, there are few in vitro and preclinical models to predict DILI, and the knowledge of DILI molecular targets is even more limited. The lapatinib (<b>1</b>) prescription label carries a black box warning for idiosyncratic hepatotoxicity and this has prompted numerous studies aimed at understanding the underlying molecular mechanisms. Using lapatinib as a tool molecule, we first identified a novel P450 3A5-catalyzed bioactivation, leading to highly reactive quinone methide (QM) metabolites formed after ortho- and para-hydroxylation at the 3F-benzyl ring, followed by self-immolation. The structure and activity relationship (SAR) studies of lapatinib analogs characterized the positional substitute-dependent quinone methide formation. Proteomics data revealed that quinone methide formation through bioactivation followed by simultaneous covalent modifications/functional disruption of several cellular enzymes in mitochondrial energy-production and reduction of oxidative stress could lead to mitochondrial stress and overall hepatotoxicity.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating Molecular Mechanisms of Drug-Induced Hepatotoxicity of Lapatinib.\",\"authors\":\"Qinying Yu, Li Ma, Leah M Norona, Peter S Dragovich, Jianshuang Wang, Shuai Wang, Yi-Chen Chen, S Cyrus Khojasteh, Jane R Kenny, Brian J Dean, Cornelis E C A Hop, Sarah J Robinson, Ke Sherry Li, Lionel Cheruzel, Aaron Fullerton, Yunxing Cheng, Mingtao He, Xinpeng Wang, Klarissa D Jackson, Zhengyin Yan, Donglu Zhang\",\"doi\":\"10.1021/acs.jmedchem.5c01305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DILI (drug-induced liver injury) remains a critical liability in drug discovery and development. However, there are few in vitro and preclinical models to predict DILI, and the knowledge of DILI molecular targets is even more limited. The lapatinib (<b>1</b>) prescription label carries a black box warning for idiosyncratic hepatotoxicity and this has prompted numerous studies aimed at understanding the underlying molecular mechanisms. Using lapatinib as a tool molecule, we first identified a novel P450 3A5-catalyzed bioactivation, leading to highly reactive quinone methide (QM) metabolites formed after ortho- and para-hydroxylation at the 3F-benzyl ring, followed by self-immolation. The structure and activity relationship (SAR) studies of lapatinib analogs characterized the positional substitute-dependent quinone methide formation. Proteomics data revealed that quinone methide formation through bioactivation followed by simultaneous covalent modifications/functional disruption of several cellular enzymes in mitochondrial energy-production and reduction of oxidative stress could lead to mitochondrial stress and overall hepatotoxicity.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.5c01305\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.5c01305","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

药物性肝损伤(DILI)仍然是药物发现和开发中的一个关键问题。然而,用于预测DILI的体外和临床前模型很少,对DILI分子靶点的认识更是有限。拉帕替尼(1)的处方标签上有一个特殊肝毒性的黑框警告,这促使了许多旨在了解其潜在分子机制的研究。使用拉帕替尼作为工具分子,我们首先发现了一种新的P450 3a5催化的生物活化,导致在3f -苄基环上的邻羟基和对羟基化后形成高活性的醌甲基(QM)代谢物,然后自我牺牲。拉帕替尼类似物的结构和活性关系(SAR)研究表征了依赖于位置取代的醌的形成。蛋白质组学数据显示,在线粒体能量产生和氧化应激减少的过程中,通过生物活化形成醌,然后同时进行共价修饰/功能破坏,从而导致线粒体应激和整体肝毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating Molecular Mechanisms of Drug-Induced Hepatotoxicity of Lapatinib.

DILI (drug-induced liver injury) remains a critical liability in drug discovery and development. However, there are few in vitro and preclinical models to predict DILI, and the knowledge of DILI molecular targets is even more limited. The lapatinib (1) prescription label carries a black box warning for idiosyncratic hepatotoxicity and this has prompted numerous studies aimed at understanding the underlying molecular mechanisms. Using lapatinib as a tool molecule, we first identified a novel P450 3A5-catalyzed bioactivation, leading to highly reactive quinone methide (QM) metabolites formed after ortho- and para-hydroxylation at the 3F-benzyl ring, followed by self-immolation. The structure and activity relationship (SAR) studies of lapatinib analogs characterized the positional substitute-dependent quinone methide formation. Proteomics data revealed that quinone methide formation through bioactivation followed by simultaneous covalent modifications/functional disruption of several cellular enzymes in mitochondrial energy-production and reduction of oxidative stress could lead to mitochondrial stress and overall hepatotoxicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信