{"title":"聚丙烯手术网状植入物用于疝和骨盆底疾病:材料性能的观点","authors":"Tanmay Jain, Irada S. Isayeva, David D. Simon","doi":"10.1002/jbm.a.37970","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Surgical meshes are medical devices that were initially designed for hernia repair and later adopted for pelvic floor reconstructive surgeries, including pelvic organ prolapse (POP) and stress urinary incontinence (SUI). Polypropylene (PP) is the most common material for surgical mesh, but others have been used clinically. Complications with PP surgical mesh have been attributed to several factors, including the post-implantation degradation of the surgical mesh materials. PP mesh was initially considered to be inert, but evidence of in vivo degradation has since been widely reported in retrieved surgical mesh after long-term implantation. This review provides an overview of the physical and mechanical properties of surgical mesh prior to implantation and the post-implantation stability of the mesh materials. We underscore the need to consider the changes in mesh properties after implantation and their potential effects on device safety. This review highlights the importance of characterizing “effective porosity,” assessing mechanical properties under physiological stresses, understanding the in vivo degradation mechanisms, employing accelerated bench-top aging methods to estimate long-term biostability, and developing in vitro in vivo correlations (IVIVC) to minimize resource-intensive long-term testing and improve patient access to innovative devices. Overall, this review provides a materials science perspective on the research gaps that could be considered in future iterations of surgical mesh devices to improve their safety and performance.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polypropylene Surgical Mesh Implants for Hernia and Pelvic Floor Disorders: A Materials Performance Perspective\",\"authors\":\"Tanmay Jain, Irada S. Isayeva, David D. Simon\",\"doi\":\"10.1002/jbm.a.37970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Surgical meshes are medical devices that were initially designed for hernia repair and later adopted for pelvic floor reconstructive surgeries, including pelvic organ prolapse (POP) and stress urinary incontinence (SUI). Polypropylene (PP) is the most common material for surgical mesh, but others have been used clinically. Complications with PP surgical mesh have been attributed to several factors, including the post-implantation degradation of the surgical mesh materials. PP mesh was initially considered to be inert, but evidence of in vivo degradation has since been widely reported in retrieved surgical mesh after long-term implantation. This review provides an overview of the physical and mechanical properties of surgical mesh prior to implantation and the post-implantation stability of the mesh materials. We underscore the need to consider the changes in mesh properties after implantation and their potential effects on device safety. This review highlights the importance of characterizing “effective porosity,” assessing mechanical properties under physiological stresses, understanding the in vivo degradation mechanisms, employing accelerated bench-top aging methods to estimate long-term biostability, and developing in vitro in vivo correlations (IVIVC) to minimize resource-intensive long-term testing and improve patient access to innovative devices. Overall, this review provides a materials science perspective on the research gaps that could be considered in future iterations of surgical mesh devices to improve their safety and performance.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37970\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37970","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Polypropylene Surgical Mesh Implants for Hernia and Pelvic Floor Disorders: A Materials Performance Perspective
Surgical meshes are medical devices that were initially designed for hernia repair and later adopted for pelvic floor reconstructive surgeries, including pelvic organ prolapse (POP) and stress urinary incontinence (SUI). Polypropylene (PP) is the most common material for surgical mesh, but others have been used clinically. Complications with PP surgical mesh have been attributed to several factors, including the post-implantation degradation of the surgical mesh materials. PP mesh was initially considered to be inert, but evidence of in vivo degradation has since been widely reported in retrieved surgical mesh after long-term implantation. This review provides an overview of the physical and mechanical properties of surgical mesh prior to implantation and the post-implantation stability of the mesh materials. We underscore the need to consider the changes in mesh properties after implantation and their potential effects on device safety. This review highlights the importance of characterizing “effective porosity,” assessing mechanical properties under physiological stresses, understanding the in vivo degradation mechanisms, employing accelerated bench-top aging methods to estimate long-term biostability, and developing in vitro in vivo correlations (IVIVC) to minimize resource-intensive long-term testing and improve patient access to innovative devices. Overall, this review provides a materials science perspective on the research gaps that could be considered in future iterations of surgical mesh devices to improve their safety and performance.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.