一种新的熵变换逆威布尔分布:发展、性质及其在不同数据建模中的应用

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tabassum Naz Sindhu, Anum Shafiq, Qasem M. Al-Mdallal, Tahani A. Abushal, Muhammad Aslam
{"title":"一种新的熵变换逆威布尔分布:发展、性质及其在不同数据建模中的应用","authors":"Tabassum Naz Sindhu,&nbsp;Anum Shafiq,&nbsp;Qasem M. Al-Mdallal,&nbsp;Tahani A. Abushal,&nbsp;Muhammad Aslam","doi":"10.1002/eng2.70171","DOIUrl":null,"url":null,"abstract":"<p>Standard distributions must be improved to enhance their capacity for data modeling because they do not inherently suit all sorts of data sets in an acceptable manner. Due to this lack of previous ones, we developed a novel model employing the entropy-transformed function. We utilized the inverse Weibull model to function as the reference model to assess the applicability of the entropy transformation. The distribution, referred to as the “Entropy-Transformed Inverse Weibull Distribution” (ETIWL), is derived by applying the entropy transformation to the inverse Weibull model. The proposed distribution's core characteristics have been taken into account. The maximum-likelihood approach is used to estimate the parameters of the given distribution. Four real data sets are used in this study with the thorough simulation analysis to see whether the proposed distribution is superior.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70171","citationCount":"0","resultStr":"{\"title\":\"A Novel Entropy-Transformed Inverse Weibull Distribution: Development, Properties, and Application in Diverse Data Modeling\",\"authors\":\"Tabassum Naz Sindhu,&nbsp;Anum Shafiq,&nbsp;Qasem M. Al-Mdallal,&nbsp;Tahani A. Abushal,&nbsp;Muhammad Aslam\",\"doi\":\"10.1002/eng2.70171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Standard distributions must be improved to enhance their capacity for data modeling because they do not inherently suit all sorts of data sets in an acceptable manner. Due to this lack of previous ones, we developed a novel model employing the entropy-transformed function. We utilized the inverse Weibull model to function as the reference model to assess the applicability of the entropy transformation. The distribution, referred to as the “Entropy-Transformed Inverse Weibull Distribution” (ETIWL), is derived by applying the entropy transformation to the inverse Weibull model. The proposed distribution's core characteristics have been taken into account. The maximum-likelihood approach is used to estimate the parameters of the given distribution. Four real data sets are used in this study with the thorough simulation analysis to see whether the proposed distribution is superior.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70171\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

必须改进标准分布,以增强其数据建模的能力,因为它们本身并不能以可接受的方式适合所有类型的数据集。由于以前的模型缺乏,我们开发了一个使用熵变换函数的新模型。我们利用逆威布尔模型作为参考模型来评估熵变换的适用性。该分布称为“熵变换逆威布尔分布”(ETIWL),是通过对逆威布尔模型进行熵变换而得到的。所提议的分配的核心特征已被考虑在内。最大似然法用于估计给定分布的参数。本研究使用了四个真实数据集,并进行了全面的模拟分析,以确定所提出的分布是否优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Novel Entropy-Transformed Inverse Weibull Distribution: Development, Properties, and Application in Diverse Data Modeling

A Novel Entropy-Transformed Inverse Weibull Distribution: Development, Properties, and Application in Diverse Data Modeling

Standard distributions must be improved to enhance their capacity for data modeling because they do not inherently suit all sorts of data sets in an acceptable manner. Due to this lack of previous ones, we developed a novel model employing the entropy-transformed function. We utilized the inverse Weibull model to function as the reference model to assess the applicability of the entropy transformation. The distribution, referred to as the “Entropy-Transformed Inverse Weibull Distribution” (ETIWL), is derived by applying the entropy transformation to the inverse Weibull model. The proposed distribution's core characteristics have been taken into account. The maximum-likelihood approach is used to estimate the parameters of the given distribution. Four real data sets are used in this study with the thorough simulation analysis to see whether the proposed distribution is superior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信