{"title":"以甲醇为原料进行化工生产的工程甲基营养酵母细胞工厂","authors":"Shuxian Wang, Jiayu Fang, Yanping Zhang, Yin Li, Taicheng Zhu","doi":"10.1111/gcbb.70068","DOIUrl":null,"url":null,"abstract":"<p>Methanol, a sustainable and abundant one-carbon (C1) feedstock, has emerged as a promising raw material for green biomanufacturing, offering a pathway to carbon neutrality. Natural methylotrophic yeasts such as <i>Pichia pastoris</i> (syn. <i>Komagataella phaffii</i>) and <i>Ogataea polymorpha</i> are increasingly recognized as attractive hosts due to their high methanol utilization rates and established roles in industrial protein and chemical production. However, their large-scale application faces critical challenges, such as low methanol assimilation efficiency, carbon loss, and methanol toxicity. This review highlights recent progress in the engineering of natural methanol cell factories, with a focus on strategies to overcome these bottlenecks. Topics include engineering the methanol assimilation and dissimilation pathways, adaptive laboratory evolution, metabolic compartmentalization, and C1/Cn cosubstrate utilization. By addressing these challenges and exploring innovative approaches, natural methylotrophic yeasts can be further developed as efficient platforms for methanol-based biomanufacturing, thus accelerating progress toward sustainable and carbon-neutral industrial processes.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 8","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70068","citationCount":"0","resultStr":"{\"title\":\"Engineering Methylotrophic Yeasts as Cell Factories for Chemical Production Using Methanol as a Feedstock\",\"authors\":\"Shuxian Wang, Jiayu Fang, Yanping Zhang, Yin Li, Taicheng Zhu\",\"doi\":\"10.1111/gcbb.70068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Methanol, a sustainable and abundant one-carbon (C1) feedstock, has emerged as a promising raw material for green biomanufacturing, offering a pathway to carbon neutrality. Natural methylotrophic yeasts such as <i>Pichia pastoris</i> (syn. <i>Komagataella phaffii</i>) and <i>Ogataea polymorpha</i> are increasingly recognized as attractive hosts due to their high methanol utilization rates and established roles in industrial protein and chemical production. However, their large-scale application faces critical challenges, such as low methanol assimilation efficiency, carbon loss, and methanol toxicity. This review highlights recent progress in the engineering of natural methanol cell factories, with a focus on strategies to overcome these bottlenecks. Topics include engineering the methanol assimilation and dissimilation pathways, adaptive laboratory evolution, metabolic compartmentalization, and C1/Cn cosubstrate utilization. By addressing these challenges and exploring innovative approaches, natural methylotrophic yeasts can be further developed as efficient platforms for methanol-based biomanufacturing, thus accelerating progress toward sustainable and carbon-neutral industrial processes.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"17 8\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70068\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70068","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Engineering Methylotrophic Yeasts as Cell Factories for Chemical Production Using Methanol as a Feedstock
Methanol, a sustainable and abundant one-carbon (C1) feedstock, has emerged as a promising raw material for green biomanufacturing, offering a pathway to carbon neutrality. Natural methylotrophic yeasts such as Pichia pastoris (syn. Komagataella phaffii) and Ogataea polymorpha are increasingly recognized as attractive hosts due to their high methanol utilization rates and established roles in industrial protein and chemical production. However, their large-scale application faces critical challenges, such as low methanol assimilation efficiency, carbon loss, and methanol toxicity. This review highlights recent progress in the engineering of natural methanol cell factories, with a focus on strategies to overcome these bottlenecks. Topics include engineering the methanol assimilation and dissimilation pathways, adaptive laboratory evolution, metabolic compartmentalization, and C1/Cn cosubstrate utilization. By addressing these challenges and exploring innovative approaches, natural methylotrophic yeasts can be further developed as efficient platforms for methanol-based biomanufacturing, thus accelerating progress toward sustainable and carbon-neutral industrial processes.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.