{"title":"Allodapine蜜蜂的微生物进化:从营养性、社会性塑料传粉者的视角","authors":"Simon M. Tierney, Thomas C. Jeffries, Hauke Koch","doi":"10.1111/eva.70137","DOIUrl":null,"url":null,"abstract":"<p>This review seeks a deeper functional understanding of wild bee microbiomes by focusing on a tribe of bees where natural history and behavioral ecology are well known but investigations of microbiology are just beginning. Opportunities to improve our future knowledge of pathogens to insect pollinators are explored—which have broad ramifications for crop pollination services, considering the current overdependence on a few managed species that face a multitude of health threats. The bee tribe Allodapini (Apidae: Xylocopinae) has the potential to offer comparative insights on the evolution of bee microbiomes, owing to a unique combination of life history traits relevant to pollination service delivery across sub-Saharan Africa, Southern Asia, and Australia. Allodapines exhibit facultatively social colony organization that offer evolutionary perspectives on the formation of group living not afforded by obligately eusocial insects, which have already transgressed the solitary-social threshold. Progressive provisioning of brood (in the absence of brood cells) facilitates a network exchange of nutrients (via trophallaxis) that we speculate may culminate in an intra-colony “network microbiome”. A literature review of pathogenic (bacterial, fungal, viral, and protozoan) associates of allodapine bees reveals considerably less research than for carpenter (<i>Ceratina</i>, <i>Xylocopa</i>), bumble (<i>Bombus</i>), and honey (<i>Apis</i>) bees. Interrogation of published genomes (<i>Exoneura</i>, <i>Exoneurella</i>) discovered novel microsporidian and protozoan parasites and relatives of known bee bacteria (<i>Commensalibacter</i>, <i>Sodalis</i>). Some <i>Xylocopa</i> exhibit microbial profiles typical of corbiculate bee core gut microbiomes, but no comparative evidence among allodapines was found. Allodapines visit flowers of 13 horticultural crops (fruits, vegetables, oilseeds, tree-nuts) and 50 native genera (predominantly Myrtaceae, Proteacae, Myoporaceae, Goodeniaceae). The ability to parse intrinsic and extrinsic factors influencing microbiome patterns within and between species means that allodapine bees provide the opportunity for an integrated approach to bee socio-eco-evo-immunology.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"18 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70137","citationCount":"0","resultStr":"{\"title\":\"Microbial Evolution in Allodapine Bees: Perspectives From Trophallactic, Socially Plastic Pollinators\",\"authors\":\"Simon M. Tierney, Thomas C. Jeffries, Hauke Koch\",\"doi\":\"10.1111/eva.70137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review seeks a deeper functional understanding of wild bee microbiomes by focusing on a tribe of bees where natural history and behavioral ecology are well known but investigations of microbiology are just beginning. Opportunities to improve our future knowledge of pathogens to insect pollinators are explored—which have broad ramifications for crop pollination services, considering the current overdependence on a few managed species that face a multitude of health threats. The bee tribe Allodapini (Apidae: Xylocopinae) has the potential to offer comparative insights on the evolution of bee microbiomes, owing to a unique combination of life history traits relevant to pollination service delivery across sub-Saharan Africa, Southern Asia, and Australia. Allodapines exhibit facultatively social colony organization that offer evolutionary perspectives on the formation of group living not afforded by obligately eusocial insects, which have already transgressed the solitary-social threshold. Progressive provisioning of brood (in the absence of brood cells) facilitates a network exchange of nutrients (via trophallaxis) that we speculate may culminate in an intra-colony “network microbiome”. A literature review of pathogenic (bacterial, fungal, viral, and protozoan) associates of allodapine bees reveals considerably less research than for carpenter (<i>Ceratina</i>, <i>Xylocopa</i>), bumble (<i>Bombus</i>), and honey (<i>Apis</i>) bees. Interrogation of published genomes (<i>Exoneura</i>, <i>Exoneurella</i>) discovered novel microsporidian and protozoan parasites and relatives of known bee bacteria (<i>Commensalibacter</i>, <i>Sodalis</i>). Some <i>Xylocopa</i> exhibit microbial profiles typical of corbiculate bee core gut microbiomes, but no comparative evidence among allodapines was found. Allodapines visit flowers of 13 horticultural crops (fruits, vegetables, oilseeds, tree-nuts) and 50 native genera (predominantly Myrtaceae, Proteacae, Myoporaceae, Goodeniaceae). The ability to parse intrinsic and extrinsic factors influencing microbiome patterns within and between species means that allodapine bees provide the opportunity for an integrated approach to bee socio-eco-evo-immunology.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"18 7\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.70137\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.70137\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70137","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Microbial Evolution in Allodapine Bees: Perspectives From Trophallactic, Socially Plastic Pollinators
This review seeks a deeper functional understanding of wild bee microbiomes by focusing on a tribe of bees where natural history and behavioral ecology are well known but investigations of microbiology are just beginning. Opportunities to improve our future knowledge of pathogens to insect pollinators are explored—which have broad ramifications for crop pollination services, considering the current overdependence on a few managed species that face a multitude of health threats. The bee tribe Allodapini (Apidae: Xylocopinae) has the potential to offer comparative insights on the evolution of bee microbiomes, owing to a unique combination of life history traits relevant to pollination service delivery across sub-Saharan Africa, Southern Asia, and Australia. Allodapines exhibit facultatively social colony organization that offer evolutionary perspectives on the formation of group living not afforded by obligately eusocial insects, which have already transgressed the solitary-social threshold. Progressive provisioning of brood (in the absence of brood cells) facilitates a network exchange of nutrients (via trophallaxis) that we speculate may culminate in an intra-colony “network microbiome”. A literature review of pathogenic (bacterial, fungal, viral, and protozoan) associates of allodapine bees reveals considerably less research than for carpenter (Ceratina, Xylocopa), bumble (Bombus), and honey (Apis) bees. Interrogation of published genomes (Exoneura, Exoneurella) discovered novel microsporidian and protozoan parasites and relatives of known bee bacteria (Commensalibacter, Sodalis). Some Xylocopa exhibit microbial profiles typical of corbiculate bee core gut microbiomes, but no comparative evidence among allodapines was found. Allodapines visit flowers of 13 horticultural crops (fruits, vegetables, oilseeds, tree-nuts) and 50 native genera (predominantly Myrtaceae, Proteacae, Myoporaceae, Goodeniaceae). The ability to parse intrinsic and extrinsic factors influencing microbiome patterns within and between species means that allodapine bees provide the opportunity for an integrated approach to bee socio-eco-evo-immunology.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.