来自GPS数据的骑行速度概况:对瑞士传统自行车和电动自行车的见解

Laurin F. Maurer, Adrian Meister, Kay W. Axhausen
{"title":"来自GPS数据的骑行速度概况:对瑞士传统自行车和电动自行车的见解","authors":"Laurin F. Maurer,&nbsp;Adrian Meister,&nbsp;Kay W. Axhausen","doi":"10.1016/j.jcmr.2025.100077","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding cycling speed dynamics is crucial for effective transportation planning and infrastructure development. This study analyzes GPS-based cycling speed profiles in Zurich, Switzerland, focusing on conventional bicycles, e-bikes (25 km/h), and speed pedelecs (45 km/h). Using GPS data from 351 cyclists, we examine the influence of socio-demographic factors (age, gender, BMI), road infrastructure, gradients, and weather conditions on cycling speeds. Our findings reveal that speed pedelecs achieve the highest speeds, frequently exceeding residential speed limits, raising questions about their classification and integration into urban mobility networks. Machine learning models identify road gradients, BMI, and age as key determinants of cycling speed. Additionally, results show that e-bikes and speed pedelecs experience longer intersection delays. These insights offer valuable contributions to urban transport policies, cycling infrastructure planning, and traffic modeling, ensuring safer and more efficient mobility solutions.</div></div>","PeriodicalId":100771,"journal":{"name":"Journal of Cycling and Micromobility Research","volume":"5 ","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycling speed profiles from GPS data: Insights for conventional and electrified bicycles in Switzerland\",\"authors\":\"Laurin F. Maurer,&nbsp;Adrian Meister,&nbsp;Kay W. Axhausen\",\"doi\":\"10.1016/j.jcmr.2025.100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding cycling speed dynamics is crucial for effective transportation planning and infrastructure development. This study analyzes GPS-based cycling speed profiles in Zurich, Switzerland, focusing on conventional bicycles, e-bikes (25 km/h), and speed pedelecs (45 km/h). Using GPS data from 351 cyclists, we examine the influence of socio-demographic factors (age, gender, BMI), road infrastructure, gradients, and weather conditions on cycling speeds. Our findings reveal that speed pedelecs achieve the highest speeds, frequently exceeding residential speed limits, raising questions about their classification and integration into urban mobility networks. Machine learning models identify road gradients, BMI, and age as key determinants of cycling speed. Additionally, results show that e-bikes and speed pedelecs experience longer intersection delays. These insights offer valuable contributions to urban transport policies, cycling infrastructure planning, and traffic modeling, ensuring safer and more efficient mobility solutions.</div></div>\",\"PeriodicalId\":100771,\"journal\":{\"name\":\"Journal of Cycling and Micromobility Research\",\"volume\":\"5 \",\"pages\":\"Article 100077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cycling and Micromobility Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S295010592500021X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cycling and Micromobility Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295010592500021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解骑行速度动态对于有效的交通规划和基础设施建设至关重要。本研究分析了瑞士苏黎世基于gps的自行车速度分布,重点是传统自行车、电动自行车(25公里/小时)和速度自行车(45公里/小时)。利用351名骑行者的GPS数据,研究了社会人口因素(年龄、性别、BMI)、道路基础设施、坡度和天气条件对骑行速度的影响。我们的研究结果表明,速度自行车达到了最高的速度,经常超过住宅的速度限制,这就提出了关于它们的分类和融入城市交通网络的问题。机器学习模型将道路坡度、BMI和年龄识别为自行车速度的关键决定因素。此外,研究结果还表明,电动自行车和超速自行车在十字路口的延误时间更长。这些见解为城市交通政策、自行车基础设施规划和交通建模提供了宝贵的贡献,确保了更安全、更高效的出行解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycling speed profiles from GPS data: Insights for conventional and electrified bicycles in Switzerland
Understanding cycling speed dynamics is crucial for effective transportation planning and infrastructure development. This study analyzes GPS-based cycling speed profiles in Zurich, Switzerland, focusing on conventional bicycles, e-bikes (25 km/h), and speed pedelecs (45 km/h). Using GPS data from 351 cyclists, we examine the influence of socio-demographic factors (age, gender, BMI), road infrastructure, gradients, and weather conditions on cycling speeds. Our findings reveal that speed pedelecs achieve the highest speeds, frequently exceeding residential speed limits, raising questions about their classification and integration into urban mobility networks. Machine learning models identify road gradients, BMI, and age as key determinants of cycling speed. Additionally, results show that e-bikes and speed pedelecs experience longer intersection delays. These insights offer valuable contributions to urban transport policies, cycling infrastructure planning, and traffic modeling, ensuring safer and more efficient mobility solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信