从车前草中提取的纳米复合生物海绵空气电极用于可穿戴和可生物降解的锌空气电池

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Gajal Singla , Vishal Kansay , Surbhi Sharma , Shagun Gupta , Ankur Kaushal , Pritam Hait , Soumen Basu , Chhavi Pahwa , Isha Lallar , Arvind Kumar Yogi , Sasanka Chakrabarti , M.K. Bera
{"title":"从车前草中提取的纳米复合生物海绵空气电极用于可穿戴和可生物降解的锌空气电池","authors":"Gajal Singla ,&nbsp;Vishal Kansay ,&nbsp;Surbhi Sharma ,&nbsp;Shagun Gupta ,&nbsp;Ankur Kaushal ,&nbsp;Pritam Hait ,&nbsp;Soumen Basu ,&nbsp;Chhavi Pahwa ,&nbsp;Isha Lallar ,&nbsp;Arvind Kumar Yogi ,&nbsp;Sasanka Chakrabarti ,&nbsp;M.K. Bera","doi":"10.1016/j.susmat.2025.e01558","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible zinc-air batteries (ZABs) are emerging as sustainable alternatives for next-generation wearable devices. This study introduces an innovative cost-effective and eco-friendly strategy for fabricating a conductive 3D nanocomposite bio-sponge derived from <em>Plantago ovata</em> (psyllium) husk via biogenic synthesis, bypassing conventional pyrolytic carbonization. The resulting bio-sponge features a mesoporous structure characterized by a type-IV adsorption/desorption isotherm, with an average pore diameter of 19.9 nm, a BET surface area of 48.5 m<sup>2</sup>·g<sup>−1</sup>, and a predominantly amorphous framework exhibiting low crystallinity (12.9 %). Structural, compositional, and thermal analyses using XRD, Raman spectroscopy, XPS, and TGA confirmed the incorporation of diverse phytochemicals and functional groups within the matrix, along with notable thermal stability, evidenced by a mass loss of only 7.6 % at 266.1 °C. As a proof-of-concept, flexible primary ZABs were fabricated using green-synthesized MnO₂ nanoparticles as the oxygen reduction reaction (ORR) catalyst, with an optimized catalyst loading of 0.2 mg·cm<sup>−2</sup>, and a <em>Plantago ovata</em>-derived alkaline hydrogel serving as the electrolyte. The batteries delivered promising performance, with an open-circuit voltage of ∼1.4 <em>V</em>, a discharge time of ∼8.8 h, a peak power density of 51 mW·cm<sup>−2</sup>, and a specific capacity of 737 mAh·g<sup>−1</sup>. The ZABs maintained robust performance under mechanical deformation, successfully powering LEDs and small electronic gadgets even under bending conditions. Furthermore, biodegradation studies revealed over 95 % decomposition of the spent ZABs within 64 days, demonstrating their environmentally benign end-of-life profile. This innovative approach underscores the potential of biogenic materials for developing sustainable, flexible, and disposable energy solutions for wearable technology.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01558"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocomposite bio-sponge air-electrode biogenically derived from Plantago ovata for applications in wearable and biodegradable zinc-air batteries\",\"authors\":\"Gajal Singla ,&nbsp;Vishal Kansay ,&nbsp;Surbhi Sharma ,&nbsp;Shagun Gupta ,&nbsp;Ankur Kaushal ,&nbsp;Pritam Hait ,&nbsp;Soumen Basu ,&nbsp;Chhavi Pahwa ,&nbsp;Isha Lallar ,&nbsp;Arvind Kumar Yogi ,&nbsp;Sasanka Chakrabarti ,&nbsp;M.K. Bera\",\"doi\":\"10.1016/j.susmat.2025.e01558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flexible zinc-air batteries (ZABs) are emerging as sustainable alternatives for next-generation wearable devices. This study introduces an innovative cost-effective and eco-friendly strategy for fabricating a conductive 3D nanocomposite bio-sponge derived from <em>Plantago ovata</em> (psyllium) husk via biogenic synthesis, bypassing conventional pyrolytic carbonization. The resulting bio-sponge features a mesoporous structure characterized by a type-IV adsorption/desorption isotherm, with an average pore diameter of 19.9 nm, a BET surface area of 48.5 m<sup>2</sup>·g<sup>−1</sup>, and a predominantly amorphous framework exhibiting low crystallinity (12.9 %). Structural, compositional, and thermal analyses using XRD, Raman spectroscopy, XPS, and TGA confirmed the incorporation of diverse phytochemicals and functional groups within the matrix, along with notable thermal stability, evidenced by a mass loss of only 7.6 % at 266.1 °C. As a proof-of-concept, flexible primary ZABs were fabricated using green-synthesized MnO₂ nanoparticles as the oxygen reduction reaction (ORR) catalyst, with an optimized catalyst loading of 0.2 mg·cm<sup>−2</sup>, and a <em>Plantago ovata</em>-derived alkaline hydrogel serving as the electrolyte. The batteries delivered promising performance, with an open-circuit voltage of ∼1.4 <em>V</em>, a discharge time of ∼8.8 h, a peak power density of 51 mW·cm<sup>−2</sup>, and a specific capacity of 737 mAh·g<sup>−1</sup>. The ZABs maintained robust performance under mechanical deformation, successfully powering LEDs and small electronic gadgets even under bending conditions. Furthermore, biodegradation studies revealed over 95 % decomposition of the spent ZABs within 64 days, demonstrating their environmentally benign end-of-life profile. This innovative approach underscores the potential of biogenic materials for developing sustainable, flexible, and disposable energy solutions for wearable technology.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"45 \",\"pages\":\"Article e01558\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725003264\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725003264","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

柔性锌空气电池(ZABs)正在成为下一代可穿戴设备的可持续替代品。本研究介绍了一种创新的经济环保的策略,通过生物合成方法制备导电3D纳米复合生物海绵,来源于车前草(车前草)外壳,绕过传统的热解碳化。所得生物海绵具有中孔结构,平均孔径为19.9 nm, BET表面积为48.5 m2·g−1,骨架以无定形为主,结晶度较低(12.9%),吸附/解吸等温线为ⅳ型。利用XRD、拉曼光谱、XPS和TGA进行结构、成分和热分析,证实了基质中含有多种植物化学物质和官能团,并具有显著的热稳定性,在266.1°C时质量损失仅为7.6%。作为概念验证,以绿色合成的mno2纳米颗粒作为氧还原反应(ORR)催化剂,优化催化剂负载为0.2 mg·cm−2,车前草衍生的碱性水凝胶作为电解质制备柔性原生ZABs。该电池具有良好的性能,开路电压为~ 1.4 V,放电时间为~ 8.8 h,峰值功率密度为51 mW·cm−2,比容量为737 mAh·g−1。ZABs在机械变形下保持了强大的性能,即使在弯曲条件下也能成功地为led和小型电子设备供电。此外,生物降解研究表明,使用过的ZABs在64天内分解率超过95%,证明了它们对环境无害。这种创新的方法强调了生物材料在为可穿戴技术开发可持续、灵活和一次性能源解决方案方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanocomposite bio-sponge air-electrode biogenically derived from Plantago ovata for applications in wearable and biodegradable zinc-air batteries

Nanocomposite bio-sponge air-electrode biogenically derived from Plantago ovata for applications in wearable and biodegradable zinc-air batteries
Flexible zinc-air batteries (ZABs) are emerging as sustainable alternatives for next-generation wearable devices. This study introduces an innovative cost-effective and eco-friendly strategy for fabricating a conductive 3D nanocomposite bio-sponge derived from Plantago ovata (psyllium) husk via biogenic synthesis, bypassing conventional pyrolytic carbonization. The resulting bio-sponge features a mesoporous structure characterized by a type-IV adsorption/desorption isotherm, with an average pore diameter of 19.9 nm, a BET surface area of 48.5 m2·g−1, and a predominantly amorphous framework exhibiting low crystallinity (12.9 %). Structural, compositional, and thermal analyses using XRD, Raman spectroscopy, XPS, and TGA confirmed the incorporation of diverse phytochemicals and functional groups within the matrix, along with notable thermal stability, evidenced by a mass loss of only 7.6 % at 266.1 °C. As a proof-of-concept, flexible primary ZABs were fabricated using green-synthesized MnO₂ nanoparticles as the oxygen reduction reaction (ORR) catalyst, with an optimized catalyst loading of 0.2 mg·cm−2, and a Plantago ovata-derived alkaline hydrogel serving as the electrolyte. The batteries delivered promising performance, with an open-circuit voltage of ∼1.4 V, a discharge time of ∼8.8 h, a peak power density of 51 mW·cm−2, and a specific capacity of 737 mAh·g−1. The ZABs maintained robust performance under mechanical deformation, successfully powering LEDs and small electronic gadgets even under bending conditions. Furthermore, biodegradation studies revealed over 95 % decomposition of the spent ZABs within 64 days, demonstrating their environmentally benign end-of-life profile. This innovative approach underscores the potential of biogenic materials for developing sustainable, flexible, and disposable energy solutions for wearable technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信