{"title":"具有弱奇异解的时间分数阶Navier-Stokes-Fokker-Planck方程的不连续Galerkin方法数值分析","authors":"Dong Liu , Weihua Deng","doi":"10.1016/j.camwa.2025.07.031","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a class of time-fractional Navier-Stokes-Fokker-Planck equations (TF-NSFPEs) describing position of particles with anomalous diffusion in viscous incompressible fluids are proposed. We develop the symmetric interior penalty discontinuous Galerkin (IPDG) method for TF-NSFPEs. The <em>L</em>1 method in the time on graded mesh is used for the reason that the solution of the time fractional Fokker-Planck equation (TFFPE) usually has a weak singularity near the initial time. The stability and the optimal error estimates of the IPDG semi-discrete scheme are proved by using the discrete fractional Grönwall inequality. Further, based on these results, the fully discrete optimal error estimates are obtained. Finally, some numerical experiments are performed to justify the effectiveness of the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"195 ","pages":"Pages 280-295"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a discontinuous Galerkin method for time-fractional Navier-Stokes-Fokker-Planck equations with weakly singular solutions\",\"authors\":\"Dong Liu , Weihua Deng\",\"doi\":\"10.1016/j.camwa.2025.07.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a class of time-fractional Navier-Stokes-Fokker-Planck equations (TF-NSFPEs) describing position of particles with anomalous diffusion in viscous incompressible fluids are proposed. We develop the symmetric interior penalty discontinuous Galerkin (IPDG) method for TF-NSFPEs. The <em>L</em>1 method in the time on graded mesh is used for the reason that the solution of the time fractional Fokker-Planck equation (TFFPE) usually has a weak singularity near the initial time. The stability and the optimal error estimates of the IPDG semi-discrete scheme are proved by using the discrete fractional Grönwall inequality. Further, based on these results, the fully discrete optimal error estimates are obtained. Finally, some numerical experiments are performed to justify the effectiveness of the theoretical results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"195 \",\"pages\":\"Pages 280-295\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003207\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003207","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical analysis of a discontinuous Galerkin method for time-fractional Navier-Stokes-Fokker-Planck equations with weakly singular solutions
In this paper, a class of time-fractional Navier-Stokes-Fokker-Planck equations (TF-NSFPEs) describing position of particles with anomalous diffusion in viscous incompressible fluids are proposed. We develop the symmetric interior penalty discontinuous Galerkin (IPDG) method for TF-NSFPEs. The L1 method in the time on graded mesh is used for the reason that the solution of the time fractional Fokker-Planck equation (TFFPE) usually has a weak singularity near the initial time. The stability and the optimal error estimates of the IPDG semi-discrete scheme are proved by using the discrete fractional Grönwall inequality. Further, based on these results, the fully discrete optimal error estimates are obtained. Finally, some numerical experiments are performed to justify the effectiveness of the theoretical results.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).