具有弱奇异解的时间分数阶Navier-Stokes-Fokker-Planck方程的不连续Galerkin方法数值分析

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Dong Liu , Weihua Deng
{"title":"具有弱奇异解的时间分数阶Navier-Stokes-Fokker-Planck方程的不连续Galerkin方法数值分析","authors":"Dong Liu ,&nbsp;Weihua Deng","doi":"10.1016/j.camwa.2025.07.031","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a class of time-fractional Navier-Stokes-Fokker-Planck equations (TF-NSFPEs) describing position of particles with anomalous diffusion in viscous incompressible fluids are proposed. We develop the symmetric interior penalty discontinuous Galerkin (IPDG) method for TF-NSFPEs. The <em>L</em>1 method in the time on graded mesh is used for the reason that the solution of the time fractional Fokker-Planck equation (TFFPE) usually has a weak singularity near the initial time. The stability and the optimal error estimates of the IPDG semi-discrete scheme are proved by using the discrete fractional Grönwall inequality. Further, based on these results, the fully discrete optimal error estimates are obtained. Finally, some numerical experiments are performed to justify the effectiveness of the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"195 ","pages":"Pages 280-295"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a discontinuous Galerkin method for time-fractional Navier-Stokes-Fokker-Planck equations with weakly singular solutions\",\"authors\":\"Dong Liu ,&nbsp;Weihua Deng\",\"doi\":\"10.1016/j.camwa.2025.07.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a class of time-fractional Navier-Stokes-Fokker-Planck equations (TF-NSFPEs) describing position of particles with anomalous diffusion in viscous incompressible fluids are proposed. We develop the symmetric interior penalty discontinuous Galerkin (IPDG) method for TF-NSFPEs. The <em>L</em>1 method in the time on graded mesh is used for the reason that the solution of the time fractional Fokker-Planck equation (TFFPE) usually has a weak singularity near the initial time. The stability and the optimal error estimates of the IPDG semi-discrete scheme are proved by using the discrete fractional Grönwall inequality. Further, based on these results, the fully discrete optimal error estimates are obtained. Finally, some numerical experiments are performed to justify the effectiveness of the theoretical results.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"195 \",\"pages\":\"Pages 280-295\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003207\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003207","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一类描述粘性不可压缩流体中异常扩散粒子位置的时间分数型Navier-Stokes-Fokker-Planck方程(f - nsfpes)。建立了TF-NSFPEs的对称内罚不连续伽辽金(IPDG)方法。由于时间分数阶Fokker-Planck方程(TFFPE)的解在初始时间附近具有较弱的奇异性,因此在时间梯度网格上采用L1方法。利用离散分数阶Grönwall不等式证明了IPDG半离散格式的稳定性和最优误差估计。进一步,基于这些结果,得到了完全离散的最优误差估计。最后,通过数值实验验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of a discontinuous Galerkin method for time-fractional Navier-Stokes-Fokker-Planck equations with weakly singular solutions
In this paper, a class of time-fractional Navier-Stokes-Fokker-Planck equations (TF-NSFPEs) describing position of particles with anomalous diffusion in viscous incompressible fluids are proposed. We develop the symmetric interior penalty discontinuous Galerkin (IPDG) method for TF-NSFPEs. The L1 method in the time on graded mesh is used for the reason that the solution of the time fractional Fokker-Planck equation (TFFPE) usually has a weak singularity near the initial time. The stability and the optimal error estimates of the IPDG semi-discrete scheme are proved by using the discrete fractional Grönwall inequality. Further, based on these results, the fully discrete optimal error estimates are obtained. Finally, some numerical experiments are performed to justify the effectiveness of the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信