{"title":"BaO-CeO2/TiO2三元纳米复合材料的制备:一种去除靛胭脂红和罗丹明B的高效光催化剂","authors":"B.S. Ramya, G. Krishnamurthy","doi":"10.1016/j.scowo.2025.100088","DOIUrl":null,"url":null,"abstract":"<div><div>The current study investigates the photocatalytic degradation of organic dyes such as indigo carmine (IC) and Rhodamine B (RhB) using BaO-supported CeO<sub>2</sub>/TiO<sub>2</sub> as a photocatalyst. The produced nanocomposite was validated using XRD, XPS, UV-Visible, and SEM/EDAX techniques. The higher photocatalytic activity of BaO-CeO<sub>2</sub>/TiO<sub>2</sub> compared to CeO<sub>2</sub>/TiO<sub>2</sub> could be attributed to an increase in pore diameter, surface area, and oxygen vacancies, as determined by photoluminescence and BET studies. The energy band gap of the BCT composite, calculated using UV-Visible spectroscopy, decreased from 3.32 eV (for pure TiO₂) to 2.43 eV with BaO-CeO₂ incorporation, indicating enhanced visible light absorption. Additionally, the surface area increased from 81.40 m²/g for TiO₂ to 86.24 m²/g for CT and further to 92.98 m²/g for BCT, as determined by BET analysis. The percentage degradation is highest for IC (95.76 %) and RhB (95.70 %) dyes. After four cycles, IC and RhB dyes degraded by around 94.9 % and 93.9 %, respectively, which is comparable to the % degradation of the first cycle of around 96 %. pH analysis reveals that IC and RhB dyes degrade more effectively in alkaline (pH=9) and neutral (pH=7) conditions than in acidic environments. The BaO-CeO<sub>2</sub>/TiO<sub>2</sub> nanocomposite remains stable after four cycles of degradation. Kinetic investigations show that both BaO-CeO<sub>2</sub>/TiO<sub>2</sub> and CeO<sub>2</sub>/TiO<sub>2</sub> can fit with first-order (f.o) models (R<sup>2</sup>=1). BaO-CeO<sub>2</sub>/TiO<sub>2</sub> nanocomposite has a higher degradation rate constant <span><math><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi><mo>.</mo><mi>o</mi></mrow></msub><mo>=</mo><mn>34.38</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace></mrow></math></span>and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi><mo>.</mo><mi>o</mi></mrow></msub><mo>=</mo><mn>26.24</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span> is higher than that of CeO<sub>2</sub>/TiO<sub>2</sub> <span><math><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi><mo>.</mo><mi>o</mi></mrow></msub><mo>=</mo><mn>18.23</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace></mrow></math></span>and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi><mo>.</mo><mi>o</mi></mrow></msub><mo>=</mo><mn>18.31</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span>. Thus, the above findings will assist technicians in designing and synthesising more effective photocatalytic degradation catalysts.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"7 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of BaO-CeO2/TiO2 ternary nanocomposite: an efficient photocatalyst for removal of indigo carmine and rhodamine B\",\"authors\":\"B.S. Ramya, G. Krishnamurthy\",\"doi\":\"10.1016/j.scowo.2025.100088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current study investigates the photocatalytic degradation of organic dyes such as indigo carmine (IC) and Rhodamine B (RhB) using BaO-supported CeO<sub>2</sub>/TiO<sub>2</sub> as a photocatalyst. The produced nanocomposite was validated using XRD, XPS, UV-Visible, and SEM/EDAX techniques. The higher photocatalytic activity of BaO-CeO<sub>2</sub>/TiO<sub>2</sub> compared to CeO<sub>2</sub>/TiO<sub>2</sub> could be attributed to an increase in pore diameter, surface area, and oxygen vacancies, as determined by photoluminescence and BET studies. The energy band gap of the BCT composite, calculated using UV-Visible spectroscopy, decreased from 3.32 eV (for pure TiO₂) to 2.43 eV with BaO-CeO₂ incorporation, indicating enhanced visible light absorption. Additionally, the surface area increased from 81.40 m²/g for TiO₂ to 86.24 m²/g for CT and further to 92.98 m²/g for BCT, as determined by BET analysis. The percentage degradation is highest for IC (95.76 %) and RhB (95.70 %) dyes. After four cycles, IC and RhB dyes degraded by around 94.9 % and 93.9 %, respectively, which is comparable to the % degradation of the first cycle of around 96 %. pH analysis reveals that IC and RhB dyes degrade more effectively in alkaline (pH=9) and neutral (pH=7) conditions than in acidic environments. The BaO-CeO<sub>2</sub>/TiO<sub>2</sub> nanocomposite remains stable after four cycles of degradation. Kinetic investigations show that both BaO-CeO<sub>2</sub>/TiO<sub>2</sub> and CeO<sub>2</sub>/TiO<sub>2</sub> can fit with first-order (f.o) models (R<sup>2</sup>=1). BaO-CeO<sub>2</sub>/TiO<sub>2</sub> nanocomposite has a higher degradation rate constant <span><math><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi><mo>.</mo><mi>o</mi></mrow></msub><mo>=</mo><mn>34.38</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace></mrow></math></span>and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi><mo>.</mo><mi>o</mi></mrow></msub><mo>=</mo><mn>26.24</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span> is higher than that of CeO<sub>2</sub>/TiO<sub>2</sub> <span><math><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi><mo>.</mo><mi>o</mi></mrow></msub><mo>=</mo><mn>18.23</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace></mrow></math></span>and <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi><mo>.</mo><mi>o</mi></mrow></msub><mo>=</mo><mn>18.31</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span>. Thus, the above findings will assist technicians in designing and synthesising more effective photocatalytic degradation catalysts.</div></div>\",\"PeriodicalId\":101197,\"journal\":{\"name\":\"Sustainable Chemistry One World\",\"volume\":\"7 \",\"pages\":\"Article 100088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry One World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950357425000459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357425000459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication of BaO-CeO2/TiO2 ternary nanocomposite: an efficient photocatalyst for removal of indigo carmine and rhodamine B
The current study investigates the photocatalytic degradation of organic dyes such as indigo carmine (IC) and Rhodamine B (RhB) using BaO-supported CeO2/TiO2 as a photocatalyst. The produced nanocomposite was validated using XRD, XPS, UV-Visible, and SEM/EDAX techniques. The higher photocatalytic activity of BaO-CeO2/TiO2 compared to CeO2/TiO2 could be attributed to an increase in pore diameter, surface area, and oxygen vacancies, as determined by photoluminescence and BET studies. The energy band gap of the BCT composite, calculated using UV-Visible spectroscopy, decreased from 3.32 eV (for pure TiO₂) to 2.43 eV with BaO-CeO₂ incorporation, indicating enhanced visible light absorption. Additionally, the surface area increased from 81.40 m²/g for TiO₂ to 86.24 m²/g for CT and further to 92.98 m²/g for BCT, as determined by BET analysis. The percentage degradation is highest for IC (95.76 %) and RhB (95.70 %) dyes. After four cycles, IC and RhB dyes degraded by around 94.9 % and 93.9 %, respectively, which is comparable to the % degradation of the first cycle of around 96 %. pH analysis reveals that IC and RhB dyes degrade more effectively in alkaline (pH=9) and neutral (pH=7) conditions than in acidic environments. The BaO-CeO2/TiO2 nanocomposite remains stable after four cycles of degradation. Kinetic investigations show that both BaO-CeO2/TiO2 and CeO2/TiO2 can fit with first-order (f.o) models (R2=1). BaO-CeO2/TiO2 nanocomposite has a higher degradation rate constant and is higher than that of CeO2/TiO2 and . Thus, the above findings will assist technicians in designing and synthesising more effective photocatalytic degradation catalysts.