优化相变材料过冷和相分离的实验改进:六水氯化钙和八水氢氧化钡共晶水合物盐

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Liu Lu , Gang Liu , Yuanji Li , Xiaohu Yang , Ya-Ling He
{"title":"优化相变材料过冷和相分离的实验改进:六水氯化钙和八水氢氧化钡共晶水合物盐","authors":"Liu Lu ,&nbsp;Gang Liu ,&nbsp;Yuanji Li ,&nbsp;Xiaohu Yang ,&nbsp;Ya-Ling He","doi":"10.1016/j.solmat.2025.113862","DOIUrl":null,"url":null,"abstract":"<div><div>Low-cost composite phase change materials (PCMs) are promising candidates for large-scale thermal energy storage and industrial waste heat utilization. In this study, two eutectic hydrated salt PCMs, CaCl<sub>2</sub>·6H<sub>2</sub>O and Ba(OH)<sub>2</sub>·8H<sub>2</sub>O, are prepared, modified, and characterized to improve thermal performance and cycling stability. The CaCl<sub>2</sub>·6H<sub>2</sub>O-based composite PCM is formulated using industrial-grade CaCl<sub>2</sub>·6H<sub>2</sub>O, MgCl<sub>2</sub>·6H<sub>2</sub>O, SrCl<sub>2</sub>·6H<sub>2</sub>O, and hydroxyethyl cellulose (HEC). The influence of SrCl<sub>2</sub>·6H<sub>2</sub>O at 1 wt%, 2 wt%, and 3 wt% on supercooling was evaluated, with 2 wt% SrCl<sub>2</sub>·6H<sub>2</sub>O exhibiting the most effective suppression of supercooling. A low content of MgCl<sub>2</sub>·6H<sub>2</sub>O improves cycling stability, while 0.5 wt% HEC significantly reduces phase separation. The optimized composite shows a melting temperature of 29.2 °C, with latent heats of melting and solidification of 170.6 J/g and 183.9 J/g, reflecting changes of −6.8 %, 2.1 %, and 1.3 % compared to the unmodified sample. The supercooling and phase separation behavior of Ba(OH)<sub>2</sub>·8H<sub>2</sub>O is also experimentally optimized. Experimental results demonstrate that CaF<sub>2</sub> and BaCO<sub>3</sub> effectively suppress supercooling, while a combination of 1 wt% gelatin and 1 wt% HEC achieves optimal phase separation control, outperforming either additive alone. The final formulation consists of 97 wt% Ba(OH)<sub>2</sub>·8H<sub>2</sub>O, 1 wt% BaCO<sub>3</sub>, 1 wt% gelatin, and 1 wt% HEC. The resulting composite exhibits a melting temperature of 80.0 °C, and latent heats of melting and solidification of 244.4 J/g and 223.6 J/g. Compared to the ones before modification, these properties change slightly by −1.5 %, 4.5 %, and 3.1 %, respectively.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"293 ","pages":"Article 113862"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental modifications for optimizing supercooling and phase separation in phase change materials: Calcium chloride hexahydrate and barium hydroxide octahydrate eutectic hydrate salts\",\"authors\":\"Liu Lu ,&nbsp;Gang Liu ,&nbsp;Yuanji Li ,&nbsp;Xiaohu Yang ,&nbsp;Ya-Ling He\",\"doi\":\"10.1016/j.solmat.2025.113862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-cost composite phase change materials (PCMs) are promising candidates for large-scale thermal energy storage and industrial waste heat utilization. In this study, two eutectic hydrated salt PCMs, CaCl<sub>2</sub>·6H<sub>2</sub>O and Ba(OH)<sub>2</sub>·8H<sub>2</sub>O, are prepared, modified, and characterized to improve thermal performance and cycling stability. The CaCl<sub>2</sub>·6H<sub>2</sub>O-based composite PCM is formulated using industrial-grade CaCl<sub>2</sub>·6H<sub>2</sub>O, MgCl<sub>2</sub>·6H<sub>2</sub>O, SrCl<sub>2</sub>·6H<sub>2</sub>O, and hydroxyethyl cellulose (HEC). The influence of SrCl<sub>2</sub>·6H<sub>2</sub>O at 1 wt%, 2 wt%, and 3 wt% on supercooling was evaluated, with 2 wt% SrCl<sub>2</sub>·6H<sub>2</sub>O exhibiting the most effective suppression of supercooling. A low content of MgCl<sub>2</sub>·6H<sub>2</sub>O improves cycling stability, while 0.5 wt% HEC significantly reduces phase separation. The optimized composite shows a melting temperature of 29.2 °C, with latent heats of melting and solidification of 170.6 J/g and 183.9 J/g, reflecting changes of −6.8 %, 2.1 %, and 1.3 % compared to the unmodified sample. The supercooling and phase separation behavior of Ba(OH)<sub>2</sub>·8H<sub>2</sub>O is also experimentally optimized. Experimental results demonstrate that CaF<sub>2</sub> and BaCO<sub>3</sub> effectively suppress supercooling, while a combination of 1 wt% gelatin and 1 wt% HEC achieves optimal phase separation control, outperforming either additive alone. The final formulation consists of 97 wt% Ba(OH)<sub>2</sub>·8H<sub>2</sub>O, 1 wt% BaCO<sub>3</sub>, 1 wt% gelatin, and 1 wt% HEC. The resulting composite exhibits a melting temperature of 80.0 °C, and latent heats of melting and solidification of 244.4 J/g and 223.6 J/g. Compared to the ones before modification, these properties change slightly by −1.5 %, 4.5 %, and 3.1 %, respectively.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"293 \",\"pages\":\"Article 113862\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825004635\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825004635","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

低成本的复合相变材料(PCMs)是大规模热能储存和工业废热利用的有前途的候选者。本研究制备了CaCl2·6H2O和Ba(OH) 2.8 h2o两种共晶水合盐PCMs,并对其进行了改性和表征,以提高其热性能和循环稳定性。CaCl2·6H2O基复合材料PCM由工业级CaCl2·6H2O、MgCl2·6H2O、SrCl2·6H2O和羟乙基纤维素(HEC)配制而成。研究了SrCl2·6H2O浓度为1 wt%、2 wt%和3 wt%时对过冷的影响,其中2 wt%的SrCl2·6H2O对过冷的抑制效果最好。低MgCl2·6H2O含量提高了循环稳定性,而0.5 wt% HEC显著降低了相分离。优化后的复合材料的熔化温度为29.2℃,熔化潜热和凝固潜热分别为170.6 J/g和183.9 J/g,与未改性的样品相比分别变化了- 6.8%、2.1%和1.3%。实验还对Ba(OH)2·8H2O的过冷和相分离行为进行了优化。实验结果表明,CaF2和BaCO3可以有效抑制过冷,而1 wt%明胶和1 wt% HEC的组合可以达到最佳的相分离控制,优于单独添加任何一种添加剂。最终配方由97 wt% Ba(OH) 2.8 h2o, 1 wt% BaCO3, 1 wt%明胶和1 wt% HEC组成。复合材料的熔化温度为80.0℃,熔化潜热和凝固潜热分别为244.4 J/g和223.6 J/g。与改性前相比,这些性能分别略有变化- 1.5%,4.5%和3.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental modifications for optimizing supercooling and phase separation in phase change materials: Calcium chloride hexahydrate and barium hydroxide octahydrate eutectic hydrate salts
Low-cost composite phase change materials (PCMs) are promising candidates for large-scale thermal energy storage and industrial waste heat utilization. In this study, two eutectic hydrated salt PCMs, CaCl2·6H2O and Ba(OH)2·8H2O, are prepared, modified, and characterized to improve thermal performance and cycling stability. The CaCl2·6H2O-based composite PCM is formulated using industrial-grade CaCl2·6H2O, MgCl2·6H2O, SrCl2·6H2O, and hydroxyethyl cellulose (HEC). The influence of SrCl2·6H2O at 1 wt%, 2 wt%, and 3 wt% on supercooling was evaluated, with 2 wt% SrCl2·6H2O exhibiting the most effective suppression of supercooling. A low content of MgCl2·6H2O improves cycling stability, while 0.5 wt% HEC significantly reduces phase separation. The optimized composite shows a melting temperature of 29.2 °C, with latent heats of melting and solidification of 170.6 J/g and 183.9 J/g, reflecting changes of −6.8 %, 2.1 %, and 1.3 % compared to the unmodified sample. The supercooling and phase separation behavior of Ba(OH)2·8H2O is also experimentally optimized. Experimental results demonstrate that CaF2 and BaCO3 effectively suppress supercooling, while a combination of 1 wt% gelatin and 1 wt% HEC achieves optimal phase separation control, outperforming either additive alone. The final formulation consists of 97 wt% Ba(OH)2·8H2O, 1 wt% BaCO3, 1 wt% gelatin, and 1 wt% HEC. The resulting composite exhibits a melting temperature of 80.0 °C, and latent heats of melting and solidification of 244.4 J/g and 223.6 J/g. Compared to the ones before modification, these properties change slightly by −1.5 %, 4.5 %, and 3.1 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信