问答社区中抑郁症用户自杀风险预测:基于深度学习的设计

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Haoyue Fan , Qiuju Yin , Junwei Kuang , Zhijun Yan
{"title":"问答社区中抑郁症用户自杀风险预测:基于深度学习的设计","authors":"Haoyue Fan ,&nbsp;Qiuju Yin ,&nbsp;Junwei Kuang ,&nbsp;Zhijun Yan","doi":"10.1016/j.im.2025.104219","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting suicide risk for people with depression is crucial for preventing adverse events. Existing research has mainly focused on users’ current post in online communities, overlooking historical posts that can provide a comprehensive representation of users’ emotional changes. In this study, we propose a deep learning-based method called dynamic historical information-based suicide risk prediction (DHISRP), which integrates current and heterogeneous historical posts to capture the dynamic and complicated features of users’ post sequences for suicide risk prediction. Empirical evaluation shows the superior effectiveness of our method compared to the baseline model and emphasizes the importance of considering both current and historical posts to predict suicide risk.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 8","pages":"Article 104219"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suicide risk prediction for users with depression in question answering communities: A design based on deep learning\",\"authors\":\"Haoyue Fan ,&nbsp;Qiuju Yin ,&nbsp;Junwei Kuang ,&nbsp;Zhijun Yan\",\"doi\":\"10.1016/j.im.2025.104219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting suicide risk for people with depression is crucial for preventing adverse events. Existing research has mainly focused on users’ current post in online communities, overlooking historical posts that can provide a comprehensive representation of users’ emotional changes. In this study, we propose a deep learning-based method called dynamic historical information-based suicide risk prediction (DHISRP), which integrates current and heterogeneous historical posts to capture the dynamic and complicated features of users’ post sequences for suicide risk prediction. Empirical evaluation shows the superior effectiveness of our method compared to the baseline model and emphasizes the importance of considering both current and historical posts to predict suicide risk.</div></div>\",\"PeriodicalId\":56291,\"journal\":{\"name\":\"Information & Management\",\"volume\":\"62 8\",\"pages\":\"Article 104219\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information & Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378720625001223\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720625001223","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

预测抑郁症患者的自杀风险对于预防不良事件至关重要。现有的研究主要集中在用户在网络社区的当前帖子上,忽略了能够全面反映用户情绪变化的历史帖子。在本研究中,我们提出了一种基于深度学习的基于动态历史信息的自杀风险预测(DHISRP)方法,该方法整合当前和异构的历史帖子,捕捉用户帖子序列的动态和复杂特征,用于自杀风险预测。实证评估表明,与基线模型相比,我们的方法具有优越的有效性,并强调了考虑当前和历史职位预测自杀风险的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suicide risk prediction for users with depression in question answering communities: A design based on deep learning
Predicting suicide risk for people with depression is crucial for preventing adverse events. Existing research has mainly focused on users’ current post in online communities, overlooking historical posts that can provide a comprehensive representation of users’ emotional changes. In this study, we propose a deep learning-based method called dynamic historical information-based suicide risk prediction (DHISRP), which integrates current and heterogeneous historical posts to capture the dynamic and complicated features of users’ post sequences for suicide risk prediction. Empirical evaluation shows the superior effectiveness of our method compared to the baseline model and emphasizes the importance of considering both current and historical posts to predict suicide risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信