合理设计用于增强析氢催化的过渡金属嵌入ti掺杂WS2双层膜:一种协同dft -机器学习方法

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Yingchao Wang , Yi Wang , Tengteng Chen , Lei Li , Guang Wang , Zhengli Zhang , Zhao Ding , Xiang Guo , Zijiang Luo , Xuefei Liu
{"title":"合理设计用于增强析氢催化的过渡金属嵌入ti掺杂WS2双层膜:一种协同dft -机器学习方法","authors":"Yingchao Wang ,&nbsp;Yi Wang ,&nbsp;Tengteng Chen ,&nbsp;Lei Li ,&nbsp;Guang Wang ,&nbsp;Zhengli Zhang ,&nbsp;Zhao Ding ,&nbsp;Xiang Guo ,&nbsp;Zijiang Luo ,&nbsp;Xuefei Liu","doi":"10.1016/j.electacta.2025.147011","DOIUrl":null,"url":null,"abstract":"<div><div>The rational design of cost-effective hydrogen evolution reaction (HER) electrocatalysts remains a critical challenge in advancing sustainable energy technologies. This study employs an integrated computational approach combining density functional theory (DFT) with machine learning (ML) algorithms to systematically investigate transition metal (TM; <em>Sc</em>-Zn) intercalation effects in Ti-doped WS₂ bilayers. Our results reveal that intercalation of specific TM atoms (Ti, V, Cr, Mn, Fe) significantly enhances HER performance, with eight configurations exhibiting ultralow hydrogen adsorption Gibbs free energy (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>G</mi><msup><mrow><mi>H</mi></mrow><mo>*</mo></msup></msub></mrow></math></span>, 0.003–0.083 eV), surpassing commercial Pt catalysts (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>G</mi><msup><mrow><mi>H</mi></mrow><mo>*</mo></msup></msub></mrow></math></span> = 0.09 eV). Stability analyses confirm the thermodynamic robustness of these systems under operational conditions. The <span>d</span>-band center of intercalated atoms is found to be the dominant factor governing HER activity through ML models, with TM–S bond lengths as a secondary contributor. This is particularly evident in gradient boosting regression (R² = 0.954, RMSE = 0.30 eV). By proposing a combined “intercalation-surface doping” strategy, we have established a dual optimization framework for tailoring electronic structures and active sites. This work not only provides fundamental insights into TM chalcogenide catalysis but also delivers a computational protocol for accelerating the discovery of high-performance, non-precious electrocatalysts, offering transformative potential for next-generation energy conversion systems.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"538 ","pages":"Article 147011"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of transition metal-intercalated Ti-doped WS2 bilayers for enhanced hydrogen evolution catalysis: A synergistic DFT-machine learning approach\",\"authors\":\"Yingchao Wang ,&nbsp;Yi Wang ,&nbsp;Tengteng Chen ,&nbsp;Lei Li ,&nbsp;Guang Wang ,&nbsp;Zhengli Zhang ,&nbsp;Zhao Ding ,&nbsp;Xiang Guo ,&nbsp;Zijiang Luo ,&nbsp;Xuefei Liu\",\"doi\":\"10.1016/j.electacta.2025.147011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rational design of cost-effective hydrogen evolution reaction (HER) electrocatalysts remains a critical challenge in advancing sustainable energy technologies. This study employs an integrated computational approach combining density functional theory (DFT) with machine learning (ML) algorithms to systematically investigate transition metal (TM; <em>Sc</em>-Zn) intercalation effects in Ti-doped WS₂ bilayers. Our results reveal that intercalation of specific TM atoms (Ti, V, Cr, Mn, Fe) significantly enhances HER performance, with eight configurations exhibiting ultralow hydrogen adsorption Gibbs free energy (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>G</mi><msup><mrow><mi>H</mi></mrow><mo>*</mo></msup></msub></mrow></math></span>, 0.003–0.083 eV), surpassing commercial Pt catalysts (<span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>G</mi><msup><mrow><mi>H</mi></mrow><mo>*</mo></msup></msub></mrow></math></span> = 0.09 eV). Stability analyses confirm the thermodynamic robustness of these systems under operational conditions. The <span>d</span>-band center of intercalated atoms is found to be the dominant factor governing HER activity through ML models, with TM–S bond lengths as a secondary contributor. This is particularly evident in gradient boosting regression (R² = 0.954, RMSE = 0.30 eV). By proposing a combined “intercalation-surface doping” strategy, we have established a dual optimization framework for tailoring electronic structures and active sites. This work not only provides fundamental insights into TM chalcogenide catalysis but also delivers a computational protocol for accelerating the discovery of high-performance, non-precious electrocatalysts, offering transformative potential for next-generation energy conversion systems.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"538 \",\"pages\":\"Article 147011\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625013714\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625013714","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

合理设计具有成本效益的析氢反应(HER)电催化剂仍然是推进可持续能源技术的关键挑战。本研究采用密度泛函理论(DFT)与机器学习(ML)算法相结合的综合计算方法,系统地研究过渡金属(TM;Sc-Zn在掺杂ti的ws2双层中的插层效应。我们的研究结果表明,特定的TM原子(Ti, V, Cr, Mn, Fe)的插入显著提高了HER性能,8种构型的催化剂表现出超低的氢吸附吉布斯自由能(ΔGH*, 0.003-0.083 eV),超过了商业Pt催化剂(ΔGH* = 0.09 eV)。稳定性分析证实了这些系统在运行条件下的热力学鲁棒性。通过ML模型发现,嵌入原子的d波段中心是影响HER活性的主要因素,TM-S键长度是次要因素。这在梯度增强回归中尤其明显(R² = 0.954,RMSE = 0.30 eV)。通过提出一种结合“插层-表面掺杂”的策略,我们建立了一个定制电子结构和活性位点的双重优化框架。这项工作不仅为TM硫族化物催化提供了基础见解,而且为加速发现高性能、非贵重电催化剂提供了计算协议,为下一代能量转换系统提供了变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational design of transition metal-intercalated Ti-doped WS2 bilayers for enhanced hydrogen evolution catalysis: A synergistic DFT-machine learning approach

Rational design of transition metal-intercalated Ti-doped WS2 bilayers for enhanced hydrogen evolution catalysis: A synergistic DFT-machine learning approach

Rational design of transition metal-intercalated Ti-doped WS2 bilayers for enhanced hydrogen evolution catalysis: A synergistic DFT-machine learning approach
The rational design of cost-effective hydrogen evolution reaction (HER) electrocatalysts remains a critical challenge in advancing sustainable energy technologies. This study employs an integrated computational approach combining density functional theory (DFT) with machine learning (ML) algorithms to systematically investigate transition metal (TM; Sc-Zn) intercalation effects in Ti-doped WS₂ bilayers. Our results reveal that intercalation of specific TM atoms (Ti, V, Cr, Mn, Fe) significantly enhances HER performance, with eight configurations exhibiting ultralow hydrogen adsorption Gibbs free energy (ΔGH*, 0.003–0.083 eV), surpassing commercial Pt catalysts (ΔGH* = 0.09 eV). Stability analyses confirm the thermodynamic robustness of these systems under operational conditions. The d-band center of intercalated atoms is found to be the dominant factor governing HER activity through ML models, with TM–S bond lengths as a secondary contributor. This is particularly evident in gradient boosting regression (R² = 0.954, RMSE = 0.30 eV). By proposing a combined “intercalation-surface doping” strategy, we have established a dual optimization framework for tailoring electronic structures and active sites. This work not only provides fundamental insights into TM chalcogenide catalysis but also delivers a computational protocol for accelerating the discovery of high-performance, non-precious electrocatalysts, offering transformative potential for next-generation energy conversion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信