稳健的COVID-19死亡率风险评估:来自国家COVID队列协作的两步算法验证

Bingnan Li, Yuan Ke, Xianyan Chen, Leonardo Martinez, Ye Shen
{"title":"稳健的COVID-19死亡率风险评估:来自国家COVID队列协作的两步算法验证","authors":"Bingnan Li, Yuan Ke, Xianyan Chen, Leonardo Martinez, Ye Shen","doi":"10.1093/infdis/jiaf393","DOIUrl":null,"url":null,"abstract":"This study introduces and validates a Two-Step algorithm for assessing COVID-19 mortality risk, leveraging data from over 7 million COVID-19 cases in the National COVID Cohort Collaborative (N3C). The original algorithm stratifies patients into risk categories based on routine clinical metrics and was initially tested across diverse cohorts from multiple institutions, demonstrating strong predictive performance. Further validation of this algorithm on 2.4 million valid N3C COVID-19 records, including a subset of 768,957 with complete data, yielded a C-statistic exceeding 0.85. The algorithm adapts effectively to evolving mortality trends, particularly during the Omicron variant surge. Comparative analyses of full and imputed datasets underscore the algorithm’s robustness across varied clinical settings. Our work offers a scalable tool for pandemic management, highlighting the critical role of data-informed approaches in public health.","PeriodicalId":501010,"journal":{"name":"The Journal of Infectious Diseases","volume":"144 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust COVID-19 Mortality Risk Assessment: Validation of a Two-Step Algorithm from the National COVID Cohort Collaborative\",\"authors\":\"Bingnan Li, Yuan Ke, Xianyan Chen, Leonardo Martinez, Ye Shen\",\"doi\":\"10.1093/infdis/jiaf393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces and validates a Two-Step algorithm for assessing COVID-19 mortality risk, leveraging data from over 7 million COVID-19 cases in the National COVID Cohort Collaborative (N3C). The original algorithm stratifies patients into risk categories based on routine clinical metrics and was initially tested across diverse cohorts from multiple institutions, demonstrating strong predictive performance. Further validation of this algorithm on 2.4 million valid N3C COVID-19 records, including a subset of 768,957 with complete data, yielded a C-statistic exceeding 0.85. The algorithm adapts effectively to evolving mortality trends, particularly during the Omicron variant surge. Comparative analyses of full and imputed datasets underscore the algorithm’s robustness across varied clinical settings. Our work offers a scalable tool for pandemic management, highlighting the critical role of data-informed approaches in public health.\",\"PeriodicalId\":501010,\"journal\":{\"name\":\"The Journal of Infectious Diseases\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Infectious Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/infdis/jiaf393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/infdis/jiaf393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用国家COVID队列协作(N3C)中超过700万例COVID-19病例的数据,引入并验证了用于评估COVID-19死亡风险的两步算法。原始算法根据常规临床指标将患者分为风险类别,并在来自多个机构的不同队列中进行了初步测试,显示出强大的预测性能。该算法在240万条有效的N3C COVID-19记录上进一步验证,其中包括768,957条完整数据的子集,其c统计量超过0.85。该算法有效地适应了不断变化的死亡率趋势,特别是在欧米克隆变异激增期间。完整数据集和输入数据集的比较分析强调了该算法在不同临床环境中的稳健性。我们的工作为大流行管理提供了一个可扩展的工具,突出了数据知情方法在公共卫生中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust COVID-19 Mortality Risk Assessment: Validation of a Two-Step Algorithm from the National COVID Cohort Collaborative
This study introduces and validates a Two-Step algorithm for assessing COVID-19 mortality risk, leveraging data from over 7 million COVID-19 cases in the National COVID Cohort Collaborative (N3C). The original algorithm stratifies patients into risk categories based on routine clinical metrics and was initially tested across diverse cohorts from multiple institutions, demonstrating strong predictive performance. Further validation of this algorithm on 2.4 million valid N3C COVID-19 records, including a subset of 768,957 with complete data, yielded a C-statistic exceeding 0.85. The algorithm adapts effectively to evolving mortality trends, particularly during the Omicron variant surge. Comparative analyses of full and imputed datasets underscore the algorithm’s robustness across varied clinical settings. Our work offers a scalable tool for pandemic management, highlighting the critical role of data-informed approaches in public health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信