全新世干燥过程中微生物对植物群落变化的响应保护了泥炭地的碳储量

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yiming Zhang, Xianyu Huang, Bingyan Zhao, Chaoyang Yan, Hongyan Zhao, Hongbin Zhang, Toby A. Halamka, Rebecca H. Peel, Mike Vreeken, Angela V. Gallego-Sala, Richard D. Pancost, Shucheng Xie
{"title":"全新世干燥过程中微生物对植物群落变化的响应保护了泥炭地的碳储量","authors":"Yiming Zhang, Xianyu Huang, Bingyan Zhao, Chaoyang Yan, Hongyan Zhao, Hongbin Zhang, Toby A. Halamka, Rebecca H. Peel, Mike Vreeken, Angela V. Gallego-Sala, Richard D. Pancost, Shucheng Xie","doi":"10.1038/s41467-025-62175-1","DOIUrl":null,"url":null,"abstract":"<p>Peatlands are among the most effective long-term carbon sinks. However, climate change is triggering major ecological shifts with widespread woody plant expansion in peatlands. How microbial processes regulate carbon storage under these vegetation transitions remains uncertain. Here, we integrate multi-proxy records from a subtropical fen peatland in China with a global synthesis of paleoecological data from 155 peatlands to reveal a critical carbon regulation mechanism: woody expansion within peatlands can enhance long-term carbon storage by reshaping microbial metabolism and peat organic composition. We find mid-Holocene warming- and drying-driven woody encroachment displaced herbaceous plants, suppressing bacterial heterotrophy and shifting metabolism toward autotrophy. This transition coincides with peat organic matter transformations, marked by decreased carbohydrates and increased aromatics, promoting recalcitrant carbon pools. Together, this cascade of processes amplifies carbon accumulation, with peak rates occurring alongside diminished microbial heterotrophy during woody expansions. Our findings highlight key microbial responses to vegetation shifts that protect peatland carbon storage under climatic stress.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial responses to changing plant community protect peatland carbon stores during Holocene drying\",\"authors\":\"Yiming Zhang, Xianyu Huang, Bingyan Zhao, Chaoyang Yan, Hongyan Zhao, Hongbin Zhang, Toby A. Halamka, Rebecca H. Peel, Mike Vreeken, Angela V. Gallego-Sala, Richard D. Pancost, Shucheng Xie\",\"doi\":\"10.1038/s41467-025-62175-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Peatlands are among the most effective long-term carbon sinks. However, climate change is triggering major ecological shifts with widespread woody plant expansion in peatlands. How microbial processes regulate carbon storage under these vegetation transitions remains uncertain. Here, we integrate multi-proxy records from a subtropical fen peatland in China with a global synthesis of paleoecological data from 155 peatlands to reveal a critical carbon regulation mechanism: woody expansion within peatlands can enhance long-term carbon storage by reshaping microbial metabolism and peat organic composition. We find mid-Holocene warming- and drying-driven woody encroachment displaced herbaceous plants, suppressing bacterial heterotrophy and shifting metabolism toward autotrophy. This transition coincides with peat organic matter transformations, marked by decreased carbohydrates and increased aromatics, promoting recalcitrant carbon pools. Together, this cascade of processes amplifies carbon accumulation, with peak rates occurring alongside diminished microbial heterotrophy during woody expansions. Our findings highlight key microbial responses to vegetation shifts that protect peatland carbon storage under climatic stress.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62175-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62175-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

泥炭地是最有效的长期碳汇之一。然而,随着泥炭地木本植物的广泛扩张,气候变化正在引发重大的生态变化。在这些植被转变下,微生物过程如何调节碳储存仍不确定。在此,我们将中国亚热带沼泽泥炭地的多代理记录与全球155个泥炭地的古生态数据综合起来,揭示了一个关键的碳调节机制:泥炭地内的树木扩张可以通过重塑微生物代谢和泥炭有机组成来提高长期碳储量。我们发现,在全新世中期,由变暖和干燥驱动的木质侵蚀取代了草本植物,抑制了细菌的异养,并将代谢转向自养。这一转变与泥炭有机质转化相一致,其特征是碳水化合物减少,芳烃增加,促进了顽固性碳库。总的来说,这个级联过程放大了碳积累,在木材膨胀期间,随着微生物异养性的减少,碳积累率达到峰值。我们的研究结果强调了在气候压力下保护泥炭地碳储量的关键微生物对植被变化的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microbial responses to changing plant community protect peatland carbon stores during Holocene drying

Microbial responses to changing plant community protect peatland carbon stores during Holocene drying

Peatlands are among the most effective long-term carbon sinks. However, climate change is triggering major ecological shifts with widespread woody plant expansion in peatlands. How microbial processes regulate carbon storage under these vegetation transitions remains uncertain. Here, we integrate multi-proxy records from a subtropical fen peatland in China with a global synthesis of paleoecological data from 155 peatlands to reveal a critical carbon regulation mechanism: woody expansion within peatlands can enhance long-term carbon storage by reshaping microbial metabolism and peat organic composition. We find mid-Holocene warming- and drying-driven woody encroachment displaced herbaceous plants, suppressing bacterial heterotrophy and shifting metabolism toward autotrophy. This transition coincides with peat organic matter transformations, marked by decreased carbohydrates and increased aromatics, promoting recalcitrant carbon pools. Together, this cascade of processes amplifies carbon accumulation, with peak rates occurring alongside diminished microbial heterotrophy during woody expansions. Our findings highlight key microbial responses to vegetation shifts that protect peatland carbon storage under climatic stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信