生物刺激素诱导的抗逆性和作物增产的基因组学控制

IF 5.7 1区 生物学 Q1 PLANT SCIENCES
Tsanko Gechev
{"title":"生物刺激素诱导的抗逆性和作物增产的基因组学控制","authors":"Tsanko Gechev","doi":"10.1111/tpj.70382","DOIUrl":null,"url":null,"abstract":"<p>Biostimulants are changing modern agriculture, as they have the potential to secure healthy and sustainable food production while preserving the environment. They have two main biological effects: growth promotion and stress protection. Both effects can lead to enhancement of the yield and improvement of the marketable grade of the produce in crops, without compromising crop quality. Their use increased exponentially in the past decade, as they are highly efficient, ecologically friendly (non-toxic, biodegradable), and applicable to all major crops. While exponential data on the physiological mechanisms of stress protection is accumulating in recent years, the information as to how biostimulants act at the molecular level is still rather limited. Here we review the growing evidence of the biostimulants role in stress protection and yield enhancement of crops, as well as the recent transcriptomic and metabolomic data, which indicate biostimulants' molecular mode of action. In particular, we outline the role of genes encoding signaling components, plant hormones (abscisic acid, brassinosteroids, and ethylene), genes encoding transcription factors from ERF, WRKY, NAC, and MYB families, and genes related to growth, photosynthesis, and stress response. Finally, we describe strategies to study the genetic and genomics control of biostimulants mode of action, with foci on stress tolerance and yield enhancement. In Arabidopsis, established systems for biostimulants-induced protection against drought and oxidative stress will allow both forward and reverse genetics approaches to identify key genes from the biostimulants network. Mutations in such genes compromise the stress-protective effect of biostimulants. In major crops such as pepper and tomato, large Genome Wide Association Studies (GWAS) panels can be utilized to study crops responses to biostimulants in terms of drought tolerance, fruit qualities, and yield in order to pinpoint genes controlling biostimulants-induced stress protection and yield enhancement. The combination of these approaches allows identification and verification of important genes involved in the pathways of biostimulant-induced stress protection and yield enhancement, as well as deciphering parts of the intricate biostimulant-signaling network.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"123 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70382","citationCount":"0","resultStr":"{\"title\":\"Genomics control of biostimulant-induced stress tolerance and crop yield enhancement\",\"authors\":\"Tsanko Gechev\",\"doi\":\"10.1111/tpj.70382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biostimulants are changing modern agriculture, as they have the potential to secure healthy and sustainable food production while preserving the environment. They have two main biological effects: growth promotion and stress protection. Both effects can lead to enhancement of the yield and improvement of the marketable grade of the produce in crops, without compromising crop quality. Their use increased exponentially in the past decade, as they are highly efficient, ecologically friendly (non-toxic, biodegradable), and applicable to all major crops. While exponential data on the physiological mechanisms of stress protection is accumulating in recent years, the information as to how biostimulants act at the molecular level is still rather limited. Here we review the growing evidence of the biostimulants role in stress protection and yield enhancement of crops, as well as the recent transcriptomic and metabolomic data, which indicate biostimulants' molecular mode of action. In particular, we outline the role of genes encoding signaling components, plant hormones (abscisic acid, brassinosteroids, and ethylene), genes encoding transcription factors from ERF, WRKY, NAC, and MYB families, and genes related to growth, photosynthesis, and stress response. Finally, we describe strategies to study the genetic and genomics control of biostimulants mode of action, with foci on stress tolerance and yield enhancement. In Arabidopsis, established systems for biostimulants-induced protection against drought and oxidative stress will allow both forward and reverse genetics approaches to identify key genes from the biostimulants network. Mutations in such genes compromise the stress-protective effect of biostimulants. In major crops such as pepper and tomato, large Genome Wide Association Studies (GWAS) panels can be utilized to study crops responses to biostimulants in terms of drought tolerance, fruit qualities, and yield in order to pinpoint genes controlling biostimulants-induced stress protection and yield enhancement. The combination of these approaches allows identification and verification of important genes involved in the pathways of biostimulant-induced stress protection and yield enhancement, as well as deciphering parts of the intricate biostimulant-signaling network.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"123 2\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70382\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70382\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70382","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物刺激剂正在改变现代农业,因为它们有可能在保护环境的同时确保健康和可持续的粮食生产。它们有两种主要的生物学作用:促进生长和保护应激。这两种效果都能在不影响作物质量的情况下提高产量和改善作物的适销等级。由于它们高效、生态友好(无毒、可生物降解)且适用于所有主要作物,在过去十年中,它们的使用量呈指数级增长。虽然近年来关于应激保护生理机制的指数数据越来越多,但关于生物刺激素在分子水平上如何起作用的信息仍然相当有限。在这里,我们回顾了越来越多的证据表明生物刺激素在作物胁迫保护和产量提高中的作用,以及最近的转录组学和代谢组学数据,这些数据表明生物刺激素的分子作用模式。特别是,我们概述了编码信号成分、植物激素(脱落酸、油菜素内酯和乙烯)、编码ERF、WRKY、NAC和MYB家族转录因子的基因以及与生长、光合作用和胁迫反应相关的基因的作用。最后,我们描述了研究生物刺激素作用模式的遗传和基因组学控制策略,重点是耐受性和产量提高。在拟南芥中,生物刺激素诱导的抗干旱和氧化应激保护系统将允许正向和反向遗传学方法从生物刺激素网络中识别关键基因。这些基因的突变破坏了生物刺激剂的应激保护作用。在辣椒和番茄等主要作物中,可以利用大型全基因组关联研究(GWAS)面板来研究作物对生物刺激剂的耐旱性、果实品质和产量的反应,以便查明控制生物刺激剂诱导的胁迫保护和产量提高的基因。这些方法的结合可以识别和验证生物刺激剂诱导的胁迫保护和产量提高途径中涉及的重要基因,以及破译复杂的生物刺激剂信号网络的部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genomics control of biostimulant-induced stress tolerance and crop yield enhancement

Genomics control of biostimulant-induced stress tolerance and crop yield enhancement

Biostimulants are changing modern agriculture, as they have the potential to secure healthy and sustainable food production while preserving the environment. They have two main biological effects: growth promotion and stress protection. Both effects can lead to enhancement of the yield and improvement of the marketable grade of the produce in crops, without compromising crop quality. Their use increased exponentially in the past decade, as they are highly efficient, ecologically friendly (non-toxic, biodegradable), and applicable to all major crops. While exponential data on the physiological mechanisms of stress protection is accumulating in recent years, the information as to how biostimulants act at the molecular level is still rather limited. Here we review the growing evidence of the biostimulants role in stress protection and yield enhancement of crops, as well as the recent transcriptomic and metabolomic data, which indicate biostimulants' molecular mode of action. In particular, we outline the role of genes encoding signaling components, plant hormones (abscisic acid, brassinosteroids, and ethylene), genes encoding transcription factors from ERF, WRKY, NAC, and MYB families, and genes related to growth, photosynthesis, and stress response. Finally, we describe strategies to study the genetic and genomics control of biostimulants mode of action, with foci on stress tolerance and yield enhancement. In Arabidopsis, established systems for biostimulants-induced protection against drought and oxidative stress will allow both forward and reverse genetics approaches to identify key genes from the biostimulants network. Mutations in such genes compromise the stress-protective effect of biostimulants. In major crops such as pepper and tomato, large Genome Wide Association Studies (GWAS) panels can be utilized to study crops responses to biostimulants in terms of drought tolerance, fruit qualities, and yield in order to pinpoint genes controlling biostimulants-induced stress protection and yield enhancement. The combination of these approaches allows identification and verification of important genes involved in the pathways of biostimulant-induced stress protection and yield enhancement, as well as deciphering parts of the intricate biostimulant-signaling network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信