函数仿射LPV状态空间表示与LFT模型的等价性

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Mihály Petreczky;Ziad Alkhoury;Guillaume Mercère
{"title":"函数仿射LPV状态空间表示与LFT模型的等价性","authors":"Mihály Petreczky;Ziad Alkhoury;Guillaume Mercère","doi":"10.1109/LCSYS.2025.3584839","DOIUrl":null,"url":null,"abstract":"We propose a transformation algorithm for a class of Linear Parameter-Varying (LPV) systems with functional affine dependence on parameters, where the system matrices depend affinely on nonlinear functions of the scheduling variable, into Linear Fractional Transformation (LFT) systems. The transformation preserves input-output behavior and minimality, and the uncertainity block of the resulting LFT system is linear in the scheduling variables.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"1874-1879"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Equivalence Between Functionally Affine LPV State-Space Representations and LFT Models\",\"authors\":\"Mihály Petreczky;Ziad Alkhoury;Guillaume Mercère\",\"doi\":\"10.1109/LCSYS.2025.3584839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a transformation algorithm for a class of Linear Parameter-Varying (LPV) systems with functional affine dependence on parameters, where the system matrices depend affinely on nonlinear functions of the scheduling variable, into Linear Fractional Transformation (LFT) systems. The transformation preserves input-output behavior and minimality, and the uncertainity block of the resulting LFT system is linear in the scheduling variables.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"1874-1879\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11062621/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11062621/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对一类具有参数泛函仿射依赖的线性变参系统(LPV),其中系统矩阵仿射依赖于调度变量的非线性函数,提出了一种将其转化为线性分数阶变换(LFT)系统的算法。该变换保留了输入输出行为和最小性,并且得到的LFT系统的不确定性块在调度变量中是线性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Equivalence Between Functionally Affine LPV State-Space Representations and LFT Models
We propose a transformation algorithm for a class of Linear Parameter-Varying (LPV) systems with functional affine dependence on parameters, where the system matrices depend affinely on nonlinear functions of the scheduling variable, into Linear Fractional Transformation (LFT) systems. The transformation preserves input-output behavior and minimality, and the uncertainity block of the resulting LFT system is linear in the scheduling variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信