Sonaimuthu Mohandoss , Kuppu Sakthi Velu , Naushad Ahmad , Ramachandran Srinivasan , Prasanta Roy , Prathap Somu , Dibyajyoti Haldar
{"title":"β-环糊精衍生物与氨氯地平包合物增强溶解度、药物释放和抗癌活性的比较研究","authors":"Sonaimuthu Mohandoss , Kuppu Sakthi Velu , Naushad Ahmad , Ramachandran Srinivasan , Prasanta Roy , Prathap Somu , Dibyajyoti Haldar","doi":"10.1016/j.ijpx.2025.100368","DOIUrl":null,"url":null,"abstract":"<div><div>Amlodipine (AMD), a calcium channel blocker, has become a viable anticancer treatment because of its biological properties. However, its poor water solubility and low bioavailability hinder its physiological activities and therapeutic applications when administered orally. In this study, inclusion complexes (ICs) of AMD with pure cyclodextrins (CDs) and three different CD derivatives, namely hydroxypropyl β-cyclodextrin (HD), methyl-β-cyclodextrin (MD), and sulfobutylether-β-cyclodextrin (SD), were prepared, and their physicochemical and biological properties were compared. The enhanced solubility of AMD:CD IC formation in aqueous media was measured using UV–Vis and fluorescence spectroscopy, and the binding constants were calculated using the Benesi-Hildebrand method. In addition, phase solubility studies confirmed the formation of 1:1 ICs, which followed an A<sub>L</sub>-type profile. Among the various CD derivatives, AMD:SD exhibited a high apparent stability constant (K<sub>1:1</sub>) of 1447.5 M<sup>−1</sup>, indicating a strong affinity between SD and AMD. The AMD:CDs (1:1) ICs were prepared using the co-precipitation method and characterized to identify the functional groups, crystallinity, morphological changes, and thermal stability, which indicated the successful encapsulation of AMD within CDs. Moreover, molecular docking studies confirmed the encapsulation of AMD within CDs with favorable binding energy and stable interactions. Drug release studies showed an initial burst release followed by a sustained release after 20 min, and the release percentage for the AMD:CDs was between 82 and 98 %. Finally, the AMD:CDs ICs exhibited superior cell viability and cellular uptake in HCT-116 cells using the WST-1 assay compared to that of pure AMD and CDs.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"10 ","pages":"Article 100368"},"PeriodicalIF":6.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of β-cyclodextrin derivatives with amlodipine inclusion complexes for enhanced solubility, drug release, and anticancer activity\",\"authors\":\"Sonaimuthu Mohandoss , Kuppu Sakthi Velu , Naushad Ahmad , Ramachandran Srinivasan , Prasanta Roy , Prathap Somu , Dibyajyoti Haldar\",\"doi\":\"10.1016/j.ijpx.2025.100368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amlodipine (AMD), a calcium channel blocker, has become a viable anticancer treatment because of its biological properties. However, its poor water solubility and low bioavailability hinder its physiological activities and therapeutic applications when administered orally. In this study, inclusion complexes (ICs) of AMD with pure cyclodextrins (CDs) and three different CD derivatives, namely hydroxypropyl β-cyclodextrin (HD), methyl-β-cyclodextrin (MD), and sulfobutylether-β-cyclodextrin (SD), were prepared, and their physicochemical and biological properties were compared. The enhanced solubility of AMD:CD IC formation in aqueous media was measured using UV–Vis and fluorescence spectroscopy, and the binding constants were calculated using the Benesi-Hildebrand method. In addition, phase solubility studies confirmed the formation of 1:1 ICs, which followed an A<sub>L</sub>-type profile. Among the various CD derivatives, AMD:SD exhibited a high apparent stability constant (K<sub>1:1</sub>) of 1447.5 M<sup>−1</sup>, indicating a strong affinity between SD and AMD. The AMD:CDs (1:1) ICs were prepared using the co-precipitation method and characterized to identify the functional groups, crystallinity, morphological changes, and thermal stability, which indicated the successful encapsulation of AMD within CDs. Moreover, molecular docking studies confirmed the encapsulation of AMD within CDs with favorable binding energy and stable interactions. Drug release studies showed an initial burst release followed by a sustained release after 20 min, and the release percentage for the AMD:CDs was between 82 and 98 %. Finally, the AMD:CDs ICs exhibited superior cell viability and cellular uptake in HCT-116 cells using the WST-1 assay compared to that of pure AMD and CDs.</div></div>\",\"PeriodicalId\":14280,\"journal\":{\"name\":\"International Journal of Pharmaceutics: X\",\"volume\":\"10 \",\"pages\":\"Article 100368\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics: X\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590156725000532\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000532","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Comparative study of β-cyclodextrin derivatives with amlodipine inclusion complexes for enhanced solubility, drug release, and anticancer activity
Amlodipine (AMD), a calcium channel blocker, has become a viable anticancer treatment because of its biological properties. However, its poor water solubility and low bioavailability hinder its physiological activities and therapeutic applications when administered orally. In this study, inclusion complexes (ICs) of AMD with pure cyclodextrins (CDs) and three different CD derivatives, namely hydroxypropyl β-cyclodextrin (HD), methyl-β-cyclodextrin (MD), and sulfobutylether-β-cyclodextrin (SD), were prepared, and their physicochemical and biological properties were compared. The enhanced solubility of AMD:CD IC formation in aqueous media was measured using UV–Vis and fluorescence spectroscopy, and the binding constants were calculated using the Benesi-Hildebrand method. In addition, phase solubility studies confirmed the formation of 1:1 ICs, which followed an AL-type profile. Among the various CD derivatives, AMD:SD exhibited a high apparent stability constant (K1:1) of 1447.5 M−1, indicating a strong affinity between SD and AMD. The AMD:CDs (1:1) ICs were prepared using the co-precipitation method and characterized to identify the functional groups, crystallinity, morphological changes, and thermal stability, which indicated the successful encapsulation of AMD within CDs. Moreover, molecular docking studies confirmed the encapsulation of AMD within CDs with favorable binding energy and stable interactions. Drug release studies showed an initial burst release followed by a sustained release after 20 min, and the release percentage for the AMD:CDs was between 82 and 98 %. Finally, the AMD:CDs ICs exhibited superior cell viability and cellular uptake in HCT-116 cells using the WST-1 assay compared to that of pure AMD and CDs.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.