Harshavardhaan Movva , Aparajita Karmakar , Senthil Kumar Hariom , Rajapriya S , Md․Gulzar ull Hasan , Raunak Kumar Das , Everette Jacob Remington Nelson , Priyanka Srivastava
{"title":"胶体纳米银的细胞相互作用和海藻酸盐封盖在防止可溶性银离子浸出中的作用","authors":"Harshavardhaan Movva , Aparajita Karmakar , Senthil Kumar Hariom , Rajapriya S , Md․Gulzar ull Hasan , Raunak Kumar Das , Everette Jacob Remington Nelson , Priyanka Srivastava","doi":"10.1016/j.chphi.2025.100915","DOIUrl":null,"url":null,"abstract":"<div><div>Biological effects including antimicrobial potencies of nanosilver are well known. Nanosilver particularly, small silver particles having a biopolymer as capping agent have been suggested to be more compatible to cells and biological system. Hypothesis says that a biopolymer, being large in size, could prevent the leaching of Ag<sup>+</sup> ions, which are the primary cause of AgNPs toxicity. In order to corroborate this, we synthesized colloidal silver solution which was both reduced and capped by alginate solution and Ag<sup>+</sup> ion release kinetics was performed. Overall, it was noted that mechanical agitation aids in the process of ion release which was maximum within first 30 min. (1.8 ± 1 ppm) whereas, only 0.19 ± 0.6 ppm release was observed in non-shaking conditions, in the same duration. After 30 min, the ion release was negligible, irrespective of agitation. Interestingly, the maximum amount of Ag<sup>+</sup> ion released was only 5.6 % of total. Further, the colloidal silver was examined for antioxidant activity which was surprisingly higher than the standard ascorbic acid solution. Activity of two key digestive enzymes pepsin and α-amylase was assessed in presence of silver particles in SIF and SSF, respectively. Pepsin was unaffected but α-amylase showed reduced activity with increasing particle concentration (<em>p</em> < 0.05). Next, we examined the biological effects of alginate-capped nanosilver on six bacterial strains that predominantly populate wound sites and a panel of mammalian cells. Response of microbes was both dose- and time-dependent. Among tested, <em>P. mirabilis</em> and <em>K. pneumoniae</em> were able to revive themselves after 24 h. On the other hand, IC<sub>50</sub> of the nanosilver on HADSCs, A-431, HaCaT, HEK-293, HeLa, and THP-1 was as low as 13.22, 5.96, 6.289, 12.74, 6.0, 5.6 ppm, respectively. Lastly, through intravenous administration of particles in female BalB/ mice and image analysis, we were able to get an overview of particle safety on mouse organs.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100915"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular interactions of colloidal nanosilver and role of alginate capping in prevention of soluble Ag+ leaching\",\"authors\":\"Harshavardhaan Movva , Aparajita Karmakar , Senthil Kumar Hariom , Rajapriya S , Md․Gulzar ull Hasan , Raunak Kumar Das , Everette Jacob Remington Nelson , Priyanka Srivastava\",\"doi\":\"10.1016/j.chphi.2025.100915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biological effects including antimicrobial potencies of nanosilver are well known. Nanosilver particularly, small silver particles having a biopolymer as capping agent have been suggested to be more compatible to cells and biological system. Hypothesis says that a biopolymer, being large in size, could prevent the leaching of Ag<sup>+</sup> ions, which are the primary cause of AgNPs toxicity. In order to corroborate this, we synthesized colloidal silver solution which was both reduced and capped by alginate solution and Ag<sup>+</sup> ion release kinetics was performed. Overall, it was noted that mechanical agitation aids in the process of ion release which was maximum within first 30 min. (1.8 ± 1 ppm) whereas, only 0.19 ± 0.6 ppm release was observed in non-shaking conditions, in the same duration. After 30 min, the ion release was negligible, irrespective of agitation. Interestingly, the maximum amount of Ag<sup>+</sup> ion released was only 5.6 % of total. Further, the colloidal silver was examined for antioxidant activity which was surprisingly higher than the standard ascorbic acid solution. Activity of two key digestive enzymes pepsin and α-amylase was assessed in presence of silver particles in SIF and SSF, respectively. Pepsin was unaffected but α-amylase showed reduced activity with increasing particle concentration (<em>p</em> < 0.05). Next, we examined the biological effects of alginate-capped nanosilver on six bacterial strains that predominantly populate wound sites and a panel of mammalian cells. Response of microbes was both dose- and time-dependent. Among tested, <em>P. mirabilis</em> and <em>K. pneumoniae</em> were able to revive themselves after 24 h. On the other hand, IC<sub>50</sub> of the nanosilver on HADSCs, A-431, HaCaT, HEK-293, HeLa, and THP-1 was as low as 13.22, 5.96, 6.289, 12.74, 6.0, 5.6 ppm, respectively. Lastly, through intravenous administration of particles in female BalB/ mice and image analysis, we were able to get an overview of particle safety on mouse organs.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"11 \",\"pages\":\"Article 100915\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266702242500101X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266702242500101X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Cellular interactions of colloidal nanosilver and role of alginate capping in prevention of soluble Ag+ leaching
Biological effects including antimicrobial potencies of nanosilver are well known. Nanosilver particularly, small silver particles having a biopolymer as capping agent have been suggested to be more compatible to cells and biological system. Hypothesis says that a biopolymer, being large in size, could prevent the leaching of Ag+ ions, which are the primary cause of AgNPs toxicity. In order to corroborate this, we synthesized colloidal silver solution which was both reduced and capped by alginate solution and Ag+ ion release kinetics was performed. Overall, it was noted that mechanical agitation aids in the process of ion release which was maximum within first 30 min. (1.8 ± 1 ppm) whereas, only 0.19 ± 0.6 ppm release was observed in non-shaking conditions, in the same duration. After 30 min, the ion release was negligible, irrespective of agitation. Interestingly, the maximum amount of Ag+ ion released was only 5.6 % of total. Further, the colloidal silver was examined for antioxidant activity which was surprisingly higher than the standard ascorbic acid solution. Activity of two key digestive enzymes pepsin and α-amylase was assessed in presence of silver particles in SIF and SSF, respectively. Pepsin was unaffected but α-amylase showed reduced activity with increasing particle concentration (p < 0.05). Next, we examined the biological effects of alginate-capped nanosilver on six bacterial strains that predominantly populate wound sites and a panel of mammalian cells. Response of microbes was both dose- and time-dependent. Among tested, P. mirabilis and K. pneumoniae were able to revive themselves after 24 h. On the other hand, IC50 of the nanosilver on HADSCs, A-431, HaCaT, HEK-293, HeLa, and THP-1 was as low as 13.22, 5.96, 6.289, 12.74, 6.0, 5.6 ppm, respectively. Lastly, through intravenous administration of particles in female BalB/ mice and image analysis, we were able to get an overview of particle safety on mouse organs.