基于动态仿真的区域供热网络拓扑优化与最优协同规划

IF 13.8 Q1 ENERGY & FUELS
Jonathan Vieth, Jan Westphal, Arne Speerforck
{"title":"基于动态仿真的区域供热网络拓扑优化与最优协同规划","authors":"Jonathan Vieth,&nbsp;Jan Westphal,&nbsp;Arne Speerforck","doi":"10.1016/j.adapen.2025.100233","DOIUrl":null,"url":null,"abstract":"<div><div>District heating networks play a critical role in the transition of the heating supply of buildings to renewable sources. The transition from coal-fired or gas-fired generation units to heat pumps requires new planning methods for district heating networks, since the efficiency of a heat pump is affected strongly by the supply temperature of the district heating network. Therefore, a co-planning approach including the operation of the district heating network in the planning process is required. This paper presents a novel co-planning approach consisting of two steps. First, an optimal district heating network topology is generated from real geo-referenced data. To determine the optimal topology, a new algorithm designed specifically for district heating networks is presented. Next, a simulation model is automatically generated from the respective topology. An optimization is used for the co-planning approach to select an optimal generation unit, find the optimal supply temperature, and dimension the pipes of the district heating network. In contrast to conventional district heating network planning procedures, the optimization includes a full-year dynamic simulation of the district heating network. The result of the planning process is a full y parameterized district heating network with a matching supply temperature. Furthermore, the use of simulation models allows the results to be reused for sensitivity analyses. This is illustrated by examining the selection of generation units under different <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> price scenarios.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"19 ","pages":"Article 100233"},"PeriodicalIF":13.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"District heating network topology optimization and optimal co-planning using dynamic simulations\",\"authors\":\"Jonathan Vieth,&nbsp;Jan Westphal,&nbsp;Arne Speerforck\",\"doi\":\"10.1016/j.adapen.2025.100233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>District heating networks play a critical role in the transition of the heating supply of buildings to renewable sources. The transition from coal-fired or gas-fired generation units to heat pumps requires new planning methods for district heating networks, since the efficiency of a heat pump is affected strongly by the supply temperature of the district heating network. Therefore, a co-planning approach including the operation of the district heating network in the planning process is required. This paper presents a novel co-planning approach consisting of two steps. First, an optimal district heating network topology is generated from real geo-referenced data. To determine the optimal topology, a new algorithm designed specifically for district heating networks is presented. Next, a simulation model is automatically generated from the respective topology. An optimization is used for the co-planning approach to select an optimal generation unit, find the optimal supply temperature, and dimension the pipes of the district heating network. In contrast to conventional district heating network planning procedures, the optimization includes a full-year dynamic simulation of the district heating network. The result of the planning process is a full y parameterized district heating network with a matching supply temperature. Furthermore, the use of simulation models allows the results to be reused for sensitivity analyses. This is illustrated by examining the selection of generation units under different <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> price scenarios.</div></div>\",\"PeriodicalId\":34615,\"journal\":{\"name\":\"Advances in Applied Energy\",\"volume\":\"19 \",\"pages\":\"Article 100233\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666792425000277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792425000277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

区域供热网络在建筑向可再生能源供热的过渡中发挥着关键作用。从燃煤或燃气发电机组过渡到热泵需要新的区域供热网络规划方法,因为热泵的效率受到区域供热网络供应温度的强烈影响。因此,在规划过程中需要采用包括区域供热网络运行在内的共同规划方法。本文提出了一种由两个步骤组成的新型协同规划方法。首先,根据实际地理参考数据生成最优区域供热网络拓扑结构。为了确定最优拓扑,提出了一种专门针对区域供热网络的新算法。接下来,从各自的拓扑中自动生成仿真模型。采用优化的协同规划方法,选择最优发电机组,确定最优供热温度,确定区域供热管网的管道尺寸。与传统的区域供热网络规划程序相比,优化包括区域供热网络的全年动态模拟。规划过程的结果是一个具有匹配供应温度的全参数化区域供热网络。此外,模拟模型的使用允许结果被重新用于敏感性分析。这可以通过检查不同二氧化碳价格情景下发电机组的选择来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

District heating network topology optimization and optimal co-planning using dynamic simulations

District heating network topology optimization and optimal co-planning using dynamic simulations
District heating networks play a critical role in the transition of the heating supply of buildings to renewable sources. The transition from coal-fired or gas-fired generation units to heat pumps requires new planning methods for district heating networks, since the efficiency of a heat pump is affected strongly by the supply temperature of the district heating network. Therefore, a co-planning approach including the operation of the district heating network in the planning process is required. This paper presents a novel co-planning approach consisting of two steps. First, an optimal district heating network topology is generated from real geo-referenced data. To determine the optimal topology, a new algorithm designed specifically for district heating networks is presented. Next, a simulation model is automatically generated from the respective topology. An optimization is used for the co-planning approach to select an optimal generation unit, find the optimal supply temperature, and dimension the pipes of the district heating network. In contrast to conventional district heating network planning procedures, the optimization includes a full-year dynamic simulation of the district heating network. The result of the planning process is a full y parameterized district heating network with a matching supply temperature. Furthermore, the use of simulation models allows the results to be reused for sensitivity analyses. This is illustrated by examining the selection of generation units under different CO2 price scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信