Yu Chen , Haifu Sun , Yonggang Li , Xixi Han , Yuqing Yang , Zheng Chen , Xuequan Zhao , Yuchen Qian , Xishui Liu , Feng Zhou , Jiaxiang Bai , Yusen Qiao
{"title":"磁性纳米材料用于高温治疗和控制药物输送","authors":"Yu Chen , Haifu Sun , Yonggang Li , Xixi Han , Yuqing Yang , Zheng Chen , Xuequan Zhao , Yuchen Qian , Xishui Liu , Feng Zhou , Jiaxiang Bai , Yusen Qiao","doi":"10.1016/j.bioactmat.2025.07.033","DOIUrl":null,"url":null,"abstract":"<div><div>As an innovative physiotherapeutic approach, magnetic hyperthermia therapy (MHT) has unique advantages including minimal invasiveness, precise temperature control, and deep tissue penetration capabilities. It offers unparalleled control over heating areas and temperatures, boasts high efficiency, and results in excellent tissue penetration, while remaining independent of biological tissues. With vast potential in biomedical applications ranging from antitumor therapy to thrombus dissolution, MHT harnesses magnetic nanoparticles (MNPs) to convert magnetic energy into thermal energy under an alternating magnetic field (AMF), thereby achieving therapeutic effects. Advanced magnetic nanocomposite platforms based on magnetic nanoparticles can avoid various risks associated with traditional tools, achieving precise, on-demand, or continuous targeted drug delivery and release through multiple approaches. The potential clinical applications of magnetic hyperthermia therapy are being progressively developed. The present article presents an exhaustive review of the research progress in magnetic hyperthermia therapy. Initially, the overall landscape of MHT was outlined, including physical heat generation mechanisms, types of magnetic nanoparticles and conductive nonmagnetic materials, strategies to increase the thermal efficiency of MNPs, and experimental evidence and research progress on “hot-spot” effects. This review has focused on biomedical applications and targeted drug delivery of innovative combination therapy strategies based on MHT. The progress of clinical trials on MNPs-mediated MHT (MNPs-MHT) is summarized below. Furthermore, the limitations, major challenges and prospects in the clinical translation of MHT are discussed. The objective of this work is to provide a panoramic view of biomedical applications and targeted drug delivery of MHT, which can potentially guide researchers and facilitate the successful implementation of advanced MNPs-MHT systems in the future.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"53 ","pages":"Pages 591-629"},"PeriodicalIF":18.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery\",\"authors\":\"Yu Chen , Haifu Sun , Yonggang Li , Xixi Han , Yuqing Yang , Zheng Chen , Xuequan Zhao , Yuchen Qian , Xishui Liu , Feng Zhou , Jiaxiang Bai , Yusen Qiao\",\"doi\":\"10.1016/j.bioactmat.2025.07.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As an innovative physiotherapeutic approach, magnetic hyperthermia therapy (MHT) has unique advantages including minimal invasiveness, precise temperature control, and deep tissue penetration capabilities. It offers unparalleled control over heating areas and temperatures, boasts high efficiency, and results in excellent tissue penetration, while remaining independent of biological tissues. With vast potential in biomedical applications ranging from antitumor therapy to thrombus dissolution, MHT harnesses magnetic nanoparticles (MNPs) to convert magnetic energy into thermal energy under an alternating magnetic field (AMF), thereby achieving therapeutic effects. Advanced magnetic nanocomposite platforms based on magnetic nanoparticles can avoid various risks associated with traditional tools, achieving precise, on-demand, or continuous targeted drug delivery and release through multiple approaches. The potential clinical applications of magnetic hyperthermia therapy are being progressively developed. The present article presents an exhaustive review of the research progress in magnetic hyperthermia therapy. Initially, the overall landscape of MHT was outlined, including physical heat generation mechanisms, types of magnetic nanoparticles and conductive nonmagnetic materials, strategies to increase the thermal efficiency of MNPs, and experimental evidence and research progress on “hot-spot” effects. This review has focused on biomedical applications and targeted drug delivery of innovative combination therapy strategies based on MHT. The progress of clinical trials on MNPs-mediated MHT (MNPs-MHT) is summarized below. Furthermore, the limitations, major challenges and prospects in the clinical translation of MHT are discussed. The objective of this work is to provide a panoramic view of biomedical applications and targeted drug delivery of MHT, which can potentially guide researchers and facilitate the successful implementation of advanced MNPs-MHT systems in the future.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"53 \",\"pages\":\"Pages 591-629\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25003263\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25003263","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery
As an innovative physiotherapeutic approach, magnetic hyperthermia therapy (MHT) has unique advantages including minimal invasiveness, precise temperature control, and deep tissue penetration capabilities. It offers unparalleled control over heating areas and temperatures, boasts high efficiency, and results in excellent tissue penetration, while remaining independent of biological tissues. With vast potential in biomedical applications ranging from antitumor therapy to thrombus dissolution, MHT harnesses magnetic nanoparticles (MNPs) to convert magnetic energy into thermal energy under an alternating magnetic field (AMF), thereby achieving therapeutic effects. Advanced magnetic nanocomposite platforms based on magnetic nanoparticles can avoid various risks associated with traditional tools, achieving precise, on-demand, or continuous targeted drug delivery and release through multiple approaches. The potential clinical applications of magnetic hyperthermia therapy are being progressively developed. The present article presents an exhaustive review of the research progress in magnetic hyperthermia therapy. Initially, the overall landscape of MHT was outlined, including physical heat generation mechanisms, types of magnetic nanoparticles and conductive nonmagnetic materials, strategies to increase the thermal efficiency of MNPs, and experimental evidence and research progress on “hot-spot” effects. This review has focused on biomedical applications and targeted drug delivery of innovative combination therapy strategies based on MHT. The progress of clinical trials on MNPs-mediated MHT (MNPs-MHT) is summarized below. Furthermore, the limitations, major challenges and prospects in the clinical translation of MHT are discussed. The objective of this work is to provide a panoramic view of biomedical applications and targeted drug delivery of MHT, which can potentially guide researchers and facilitate the successful implementation of advanced MNPs-MHT systems in the future.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.