Huiyang Li , Lifei Ma , Ni Zhu , Xiaoyu Liang , Kaijing Liu , Xue Fu , Chuangnian Zhang , Jing Yang
{"title":"天然来源的生物胶粘剂水凝胶具有双重抗氧化和免疫调节特性,促进血管生成和伤口愈合","authors":"Huiyang Li , Lifei Ma , Ni Zhu , Xiaoyu Liang , Kaijing Liu , Xue Fu , Chuangnian Zhang , Jing Yang","doi":"10.1016/j.bioactmat.2025.07.023","DOIUrl":null,"url":null,"abstract":"<div><div>Effective wound repair is critically impaired by persistent inflammatory responses and oxidative damage, which collectively impede tissue regeneration and exacerbate fibrotic scarring. To overcome these dual barriers, we engineered a multifunctional hydrogel platform, designated KGM-GA/XG-DPA (KG-XD<sup>gel</sup>), through molecular integration of gallic acid-conjugated konjac glucomannan (KGM-GA) with dopamine-modified xanthan gum (XG-DPA). This biomaterial system demonstrates dual therapeutic modalities: (1) concurrent scavenging of reactive oxygen species (ROS) via synergistic redox activity from phenolic components (gallic acid and catechol moieties), and (2) targeted immunomodulation through carbohydrate-mediated engagement of CD206 receptors to drive M2 macrophage polarization. Enhanced by dopamine-driven tissue adhesion and self-healing properties, the hydrogel maintains structural integrity under physiological stress. In murine full-thickness wound models, KG-XD<sup>gel</sup> treatment achieved an impressive 81 % epithelial closure within 7 days, accompanied by an 8.7-fold upregulation of CD31<sup>+</sup> neovascular networks by day 14. Notably, these therapeutic outcomes were accomplished through endogenous biological activation rather than exogenous growth factors or pharmacological agents. By converging antioxidant defense with innate immune reprogramming in a single biomaterial platform, KG-XD<sup>gel</sup> establishes a novel drug-free paradigm for accelerated wound regeneration, demonstrating significant translational potential in clinical wound management.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"53 ","pages":"Pages 507-521"},"PeriodicalIF":18.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural-origin bioadhesive hydrogel with dual antioxidative and immunoregulatory properties for enhanced angiogenesis and wound healing\",\"authors\":\"Huiyang Li , Lifei Ma , Ni Zhu , Xiaoyu Liang , Kaijing Liu , Xue Fu , Chuangnian Zhang , Jing Yang\",\"doi\":\"10.1016/j.bioactmat.2025.07.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective wound repair is critically impaired by persistent inflammatory responses and oxidative damage, which collectively impede tissue regeneration and exacerbate fibrotic scarring. To overcome these dual barriers, we engineered a multifunctional hydrogel platform, designated KGM-GA/XG-DPA (KG-XD<sup>gel</sup>), through molecular integration of gallic acid-conjugated konjac glucomannan (KGM-GA) with dopamine-modified xanthan gum (XG-DPA). This biomaterial system demonstrates dual therapeutic modalities: (1) concurrent scavenging of reactive oxygen species (ROS) via synergistic redox activity from phenolic components (gallic acid and catechol moieties), and (2) targeted immunomodulation through carbohydrate-mediated engagement of CD206 receptors to drive M2 macrophage polarization. Enhanced by dopamine-driven tissue adhesion and self-healing properties, the hydrogel maintains structural integrity under physiological stress. In murine full-thickness wound models, KG-XD<sup>gel</sup> treatment achieved an impressive 81 % epithelial closure within 7 days, accompanied by an 8.7-fold upregulation of CD31<sup>+</sup> neovascular networks by day 14. Notably, these therapeutic outcomes were accomplished through endogenous biological activation rather than exogenous growth factors or pharmacological agents. By converging antioxidant defense with innate immune reprogramming in a single biomaterial platform, KG-XD<sup>gel</sup> establishes a novel drug-free paradigm for accelerated wound regeneration, demonstrating significant translational potential in clinical wound management.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":\"53 \",\"pages\":\"Pages 507-521\"},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X25003160\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25003160","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Natural-origin bioadhesive hydrogel with dual antioxidative and immunoregulatory properties for enhanced angiogenesis and wound healing
Effective wound repair is critically impaired by persistent inflammatory responses and oxidative damage, which collectively impede tissue regeneration and exacerbate fibrotic scarring. To overcome these dual barriers, we engineered a multifunctional hydrogel platform, designated KGM-GA/XG-DPA (KG-XDgel), through molecular integration of gallic acid-conjugated konjac glucomannan (KGM-GA) with dopamine-modified xanthan gum (XG-DPA). This biomaterial system demonstrates dual therapeutic modalities: (1) concurrent scavenging of reactive oxygen species (ROS) via synergistic redox activity from phenolic components (gallic acid and catechol moieties), and (2) targeted immunomodulation through carbohydrate-mediated engagement of CD206 receptors to drive M2 macrophage polarization. Enhanced by dopamine-driven tissue adhesion and self-healing properties, the hydrogel maintains structural integrity under physiological stress. In murine full-thickness wound models, KG-XDgel treatment achieved an impressive 81 % epithelial closure within 7 days, accompanied by an 8.7-fold upregulation of CD31+ neovascular networks by day 14. Notably, these therapeutic outcomes were accomplished through endogenous biological activation rather than exogenous growth factors or pharmacological agents. By converging antioxidant defense with innate immune reprogramming in a single biomaterial platform, KG-XDgel establishes a novel drug-free paradigm for accelerated wound regeneration, demonstrating significant translational potential in clinical wound management.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.