基于增强型沙丁鱼优化算法的微电网日前运行优化

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yintong Lu, Liheng Liu, Jun Zhang, Yu Peng
{"title":"基于增强型沙丁鱼优化算法的微电网日前运行优化","authors":"Yintong Lu,&nbsp;Liheng Liu,&nbsp;Jun Zhang,&nbsp;Yu Peng","doi":"10.1016/j.epsr.2025.112047","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates a hybrid microgrid system comprising wind turbines, photovoltaic arrays, diesel generators, microturbines, and battery storage. The study formulates operational cost and emission objectives for these distributed energy resources while examining three operational scenarios. To solve the optimization problem, we develop an Enhanced Sardine Optimization Algorithm (ESOA) incorporating composite opposition-based learning. Benchmark tests comparing ESOA with sardine optimization algorithm (SOA), Multi-verse Optimization (MVO), Harris Hawks Optimization (HHO), Slime Mould Algorithm (SMA), Grey Wolf Optimizer (GWO), and Particle Swarm Optimization (PSO) algorithm demonstrate its superior solution quality. Scenario-based simulations further confirm the outperformance of ESOA in obtaining optimal solutions, verifying its effectiveness for microgrid dispatch applications.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"249 ","pages":"Article 112047"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Day-ahead operation optimization of microgrid based on enhanced sardine optimization algorithm\",\"authors\":\"Yintong Lu,&nbsp;Liheng Liu,&nbsp;Jun Zhang,&nbsp;Yu Peng\",\"doi\":\"10.1016/j.epsr.2025.112047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research investigates a hybrid microgrid system comprising wind turbines, photovoltaic arrays, diesel generators, microturbines, and battery storage. The study formulates operational cost and emission objectives for these distributed energy resources while examining three operational scenarios. To solve the optimization problem, we develop an Enhanced Sardine Optimization Algorithm (ESOA) incorporating composite opposition-based learning. Benchmark tests comparing ESOA with sardine optimization algorithm (SOA), Multi-verse Optimization (MVO), Harris Hawks Optimization (HHO), Slime Mould Algorithm (SMA), Grey Wolf Optimizer (GWO), and Particle Swarm Optimization (PSO) algorithm demonstrate its superior solution quality. Scenario-based simulations further confirm the outperformance of ESOA in obtaining optimal solutions, verifying its effectiveness for microgrid dispatch applications.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"249 \",\"pages\":\"Article 112047\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779625006352\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779625006352","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了一个混合微电网系统,包括风力涡轮机、光伏阵列、柴油发电机、微涡轮机和电池存储。该研究制定了这些分布式能源的运营成本和排放目标,同时考察了三种运营方案。为了解决优化问题,我们开发了一种基于复合对立学习的增强型沙丁鱼优化算法(ESOA)。将ESOA与沙丁鱼优化算法(SOA)、多元宇宙优化算法(MVO)、哈里斯鹰优化算法(HHO)、黏菌算法(SMA)、灰狼优化算法(GWO)和粒子群优化算法(PSO)进行基准测试,结果表明ESOA具有更好的解质量。基于场景的仿真进一步证实了ESOA在获取最优解方面的优势,验证了其在微网调度应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Day-ahead operation optimization of microgrid based on enhanced sardine optimization algorithm
This research investigates a hybrid microgrid system comprising wind turbines, photovoltaic arrays, diesel generators, microturbines, and battery storage. The study formulates operational cost and emission objectives for these distributed energy resources while examining three operational scenarios. To solve the optimization problem, we develop an Enhanced Sardine Optimization Algorithm (ESOA) incorporating composite opposition-based learning. Benchmark tests comparing ESOA with sardine optimization algorithm (SOA), Multi-verse Optimization (MVO), Harris Hawks Optimization (HHO), Slime Mould Algorithm (SMA), Grey Wolf Optimizer (GWO), and Particle Swarm Optimization (PSO) algorithm demonstrate its superior solution quality. Scenario-based simulations further confirm the outperformance of ESOA in obtaining optimal solutions, verifying its effectiveness for microgrid dispatch applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electric Power Systems Research
Electric Power Systems Research 工程技术-工程:电子与电气
CiteScore
7.50
自引率
17.90%
发文量
963
审稿时长
3.8 months
期刊介绍: Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview. • Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation. • Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design. • Substation work: equipment design, protection and control systems. • Distribution techniques, equipment development, and smart grids. • The utilization area from energy efficiency to distributed load levelling techniques. • Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信